Influence of temperature dependent viscosity on peristaltic transport of a Newtonian fluid: Application of an endoscope

2010 ◽  
Vol 216 (12) ◽  
pp. 3606-3619 ◽  
Author(s):  
S. Nadeem ◽  
Noreen Sher Akbar
2020 ◽  
Vol 10 (2) ◽  
pp. 708 ◽  
Author(s):  
Hafiz Abdul Wahab ◽  
Hussan Zeb ◽  
Saira Bhatti ◽  
Muhammad Gulistan ◽  
Seifedine Kadry ◽  
...  

The main aim of the current study is to determine the effects of the temperature dependent viscosity and thermal conductivity on magnetohydrodynamics (MHD) flow of a non-Newtonian fluid over a nonlinear stretching sheet. The viscosity of the fluid depends on stratifications. Moreover, Powell–Eyring fluid is electrically conducted subject to a non-uniform applied magnetic field. Assume a small magnetic reynolds number and boundary layer approximation are applied in the mathematical formulation. Zero nano-particles mass flux condition to the sheet is considered. The governing model is transformed into the system of nonlinear Ordinary Differential Equation (ODE) system by using suitable transformations so-called similarity transformation. In order to calculate the solution of the problem, we use the higher order convergence method, so-called shooting method followed by Runge-Kutta Fehlberg (RK45) method. The impacts of different physical parameters on velocity, temperature and concentration profiles are analyzed and discussed. The parameters of engineering interest, i.e., skin fraction, Nusselt and Sherwood numbers are studied numerically as well. We concluded that the velocity profile decreases by increasing the values of S t , H and M. Also, we have analyzed the variation of temperature and concentration profiles for different physical parameters.


2020 ◽  
Vol 25 (3) ◽  
pp. 16-34
Author(s):  
Rasha Yousif ◽  
Hayat Adil Ali

      In this article the peristaltic transport of blood flow Ree-Eyring electrically conducting fluid in a porous medium under the effect of magnetohydrodynamic and temperature dependent viscosity through asymmetric channel is examined. Governing flow problem based on momentum, and energy equations are mathematically modelled and investigated in a wave frame of reference moving with the velocity of the wave, by considering the assumption of long wavelength approximation compared to small Renold’s number they simplified and reduced into couple partial differential equations. Exact solution for the temperature profile has been obtained whereas perturbation method employed to find the approximate solution for the stream function. The impact of   important physical pertinent parameters on flow phenomena are discussed graphically. The graphs depict that the dimensionless viscosity parameter has mixed effect on velocity profile moreover the two Ree-Eyring fluid parameters  and  has opposite influence on velocity profile.


Sign in / Sign up

Export Citation Format

Share Document