scholarly journals The role of introductory alarm calls for song discrimination in Ficedula flycatchers

2021 ◽  
Vol 177 ◽  
pp. 241-251
Author(s):  
Louis Bliard ◽  
Anna Qvarnström ◽  
David Wheatcroft
2020 ◽  
Vol 8 ◽  
Author(s):  
Emily J. Hudson ◽  
Nicole Creanza ◽  
Daizaburo Shizuka

2015 ◽  
Vol 61 (4) ◽  
pp. 749-757 ◽  
Author(s):  
Martin Olofsson ◽  
Christer Wiklund ◽  
Anna Favati

Abstract Circular patterns, or eyespots, are common anti-predator features in a variety of animals. Two defensive functions have been documented: large eyespots may intimidate predators, whereas smaller marginal eyespots may divert attacks. However, a given eyespot potentially serves both functions, possibly depending on the predator’s size and/or experience. Naïve predators are potentially more likely to misdirect their attacks towards eyespots; alternatively, their typically smaller size would make them more intimidated by the same eyespots. Here we test how juvenile and sub-adult naïve chickens respond to a single eyespot on a butterfly’s wing. We presented the birds with dead wall brown butterflies, Lasiommata megera, that had their apical eyespot visible or painted over. We assessed the birds’ responses’ by (i) scoring their intimidation reaction, (ii) whether they uttered alarm calls and, (iii) if they attacked the butterfly and where they targeted their attacks. Results show that both age categories received higher intimidation scores when offered a butterfly with a visible eyespot. Juveniles were more intimidated by the butterfly than the sub-adults: they received higher intimidation scores and were more prone to utter alarm calls. Moreover, only sub-adults attacked and did so by preferentially attacking the butterfly’s anterior. We demonstrate an intimidating effect of the type of eyespot that has previously been shown only to divert attacks. We suggest that one and the same eyespot may serve two functions relative to different predators; however, further experiments are needed to disentangle the role of predator identity and its link to size, ontogeny and experience.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Attila Marton ◽  
Attila Fülöp ◽  
Katalin Ozogány ◽  
Csaba Moskát ◽  
Miklós Bán

AbstractIt is well known that avian brood parasites lay their eggs in the nests of other bird species, called hosts. It remains less clear, however, just how parasites are able to recognize their hosts and identify the exact location of the appropriate nests to lay their eggs in. While previous studies attributed high importance to visual signals in finding the hosts’ nests (e.g. nest building activity or the distance and direct sight of the nest from vantage points used by the brood parasites), the role of host acoustic signals during the nest searching stage has been largely neglected. We present experimental evidence that both female and male common cuckoos Cuculus canorus pay attention to their host’s, the great reed warbler’s Acrocephalus arundinaceus alarm calls, relative to the calls of an unparasitized species used as controls. Parallel to this, we found no difference between the visibility of parasitized and unparasitized nests during drone flights, but great reed warblers that alarmed more frequently experienced higher rates of parasitism. We conclude that alarm calls might be advantageous for the hosts when used against enemies or for alerting conspecifics, but can act in a detrimental manner by providing important nest location cues for eavesdropping brood parasites. Our results suggest that host alarm calls may constitute a suitable trait on which cuckoo nestlings can imprint on to recognize their primary host species later in life. Our study contributes to the growing body of knowledge regarding the context-dependency of animal signals, by providing a novel example of a beneficial acoustic trait intercepted by a heterospecific and used against the emitter.


2008 ◽  
Vol 276 (1657) ◽  
pp. 769-774 ◽  
Author(s):  
Robert D Magrath ◽  
Benjamin J Pitcher ◽  
Janet L Gardner

Alarm calls given by other species potentially provide a network of information about danger, but little is known about the role of acoustic similarity compared with learning in recognition of heterospecific calls. In particular, the aerial ‘hawk’ alarm calls of passerines provide a textbook example of signal design because many species have converged on a design that thwarts eavesdropping by hawks, and call similarity might therefore allow recognition. We measured the response of fairy-wrens ( Malurus cyaneus ) to playback of acoustically similar scrubwren ( Sericornis frontalis ) aerial alarm calls. First, if call similarity prompts escape independent of learning, then fairy-wrens should flee to playback of scrubwren calls outside their geographical range. However, fairy-wrens fled only in sympatry. Second, if call similarity is necessary for learning heterospecific calls, then fairy-wrens should not respond to sympatric species with different calls. We found, on the contrary, that fairy-wrens fled to the very different aerial alarm calls of a honeyeater ( Phylidonyris novaehollandiae ). Furthermore, response to the honeyeater depended on the specific structure of the call, not acoustic similarity. Overall, call similarity was neither sufficient nor necessary for interspecific recognition, implying learning is essential in the complex task of sifting the acoustic world for cues about danger.


2013 ◽  
Vol 280 (1754) ◽  
pp. 20122539 ◽  
Author(s):  
Pamela M. Fallow ◽  
Benjamin J. Pitcher ◽  
Robert D. Magrath

Vertebrates that eavesdrop on heterospecific alarm calls must distinguish alarms from sounds that can safely be ignored, but the mechanisms for identifying heterospecific alarm calls are poorly understood. While vertebrates learn to identify heterospecific alarms through experience, some can also respond to unfamiliar alarm calls that are acoustically similar to conspecific alarm calls. We used synthetic calls to test the role of specific acoustic properties in alarm call identification by superb fairy-wrens, Malurus cyaneus . Individuals fled more often in response to synthetic calls with peak frequencies closer to those of conspecific calls, even if other acoustic features were dissimilar to that of fairy-wren calls. Further, they then spent more time in cover following calls that had both peak frequencies and frequency modulation rates closer to natural fairy-wren means. Thus, fairy-wrens use similarity in specific acoustic properties to identify alarms and adjust a two-stage antipredator response. Our study reveals how birds respond to heterospecific alarm calls without experience, and, together with previous work using playback of natural calls, shows that both acoustic similarity and learning are important for interspecific eavesdropping. More generally, this study reconciles contrasting views on the importance of alarm signal structure and learning in recognition of heterospecific alarms.


2003 ◽  
Vol 60 (3) ◽  
pp. 263-274 ◽  
Author(s):  
Aurelia Bihari (née Dencev) ◽  
A.W. Hrycyshyn ◽  
Stefan M. Brudzynski

2019 ◽  
Author(s):  
Emily J. Hudson ◽  
Nicole Creanza ◽  
Daizaburo Shizuka

AbstractOscine songbirds are an ideal system for investigating how early experience affects behavior. Young songbirds face a challenging task: how to recognize and selectively learn only their own species’ song, often during a time-limited window. Because birds are capable of hearing birdsong very early in life, early exposure to song could plausibly affect recognition of appropriate models; however, this idea conflicts with the traditional view that song learning occurs only after a bird leaves the nest. Thus, it remains unknown whether natural variation in acoustic exposure prior to song learning affects the template for recognition. In a population where sister species, golden-crowned and white-crowned sparrows, breed syntopically, we found that nestlings discriminate between heterospecific and conspecific song playbacks prior to the onset of song memorization. We then asked whether natural exposure to more frequent or louder heterospecific song explained any variation in golden-crowned nestling response to heterospecific song playbacks. We characterized the amount of each species’ song audible in golden-crowned sparrow nests and showed that even in a relatively small area, the ratio of heterospecific to conspecific song exposure varies widely. However, although many songbirds hear and respond to acoustic signals before fledging, golden-crowned sparrow nestlings that heard different amounts of heterospecific song did not behave differently in response to heterospecific playbacks. This study provides the first evidence that song discrimination at the onset of song learning is robust to the presence of closely related heterospecifics in nature, which may be an important adaptation in sympatry between potentially interbreeding taxa.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ramona Rauber ◽  
Bart Kranstauber ◽  
Marta B. Manser

Abstract Background The ability to recombine smaller units to produce infinite structures of higher-order phrases is unique to human language, yet evidence of animals to combine multiple acoustic units into meaningful combinations increases constantly. Despite increasing evidence for meaningful call combinations across contexts, little attention has been paid to the potential role of temporal variation of call type composition in longer vocal sequences in conveying information about subtle changes in the environment or individual differences. Here, we investigated the composition and information content of sentinel call sequences in meerkats (Suricata suricatta). While being on sentinel guard, a coordinated vigilance behaviour, meerkats produce long sequences composed of six distinct sentinel call types and alarm calls. We analysed recordings of sentinels to test if the order of the call types is graded and whether they contain additional group-, individual-, age- or sex-specific vocal signatures. Results Our results confirmed that the six distinct types of sentinel calls in addition to alarm calls were produced in a highly graded way, likely referring to changes in the perceived predation risk. Transitions between call types one step up or down the a priory assumed gradation were over-represented, while transitions over two or three steps were significantly under-represented. Analysing sequence similarity within and between groups and individuals demonstrated that sequences composed of the most commonly emitted sentinel call types showed high within-individual consistency whereby adults and females had higher consistency scores than subadults and males respectively. Conclusions We present a novel type of combinatoriality where the order of the call types contains temporary contextual information, and also relates to the identity of the caller. By combining different call types in a graded way over long periods, meerkats constantly convey meaningful information about subtle changes in the external environment, while at the same time the temporal pattern of the distinct call types contains stable information about caller identity. Our study demonstrates how complex animal call sequences can be described by simple rules, in this case gradation across acoustically distinct, but functionally related call types, combined with individual-specific call patterns.


2018 ◽  
Vol 285 (1882) ◽  
pp. 20172676 ◽  
Author(s):  
Kristine Meise ◽  
Daniel W. Franks ◽  
Jakob Bro-Jørgensen

Heterospecific alarm calls may provide crucial survival benefits shaping animal behaviour. Multispecies studies can disentangle the relative importance of the various processes determining these benefits, but previous studies have included too few species for alternative hypotheses to be tested quantitatively in a comprehensive analysis. In a community-wide study of African savannah herbivores, we here, for the first time to our knowledge, partition alarm responses according to distinct aspects of the signaller–receiver relationship and thereby uncover the impact of several concurrent adaptive and non-adaptive processes. Stronger responses were found to callers who were vulnerable to similar predators and who were more consistent in denoting the presence of predators of the receiver. Moreover, alarm calls resembling those of conspecifics elicited stronger responses, pointing to sensory constraints, and increased responsiveness to more abundant callers indicated a role of learning. Finally, responses were stronger in risky environments. Our findings suggest that mammals can respond adaptively to variation in the information provided by heterospecific callers but within the constraints imposed by a sensory bias towards conspecific calls and reduced learning of less familiar calls. The study thereby provides new insights central to understanding the ecological consequences of interspecific communication networks in natural communities.


Sign in / Sign up

Export Citation Format

Share Document