Ruminal fermentation, nutrient metabolism, and methane emissions of sheep in response to dietary supplementation with Bacillus licheniformis

2018 ◽  
Vol 241 ◽  
pp. 38-44 ◽  
Author(s):  
K.D. Deng ◽  
Y. Xiao ◽  
T. Ma ◽  
Y. Tu ◽  
Q.Y. Diao ◽  
...  
2014 ◽  
Vol 191 ◽  
pp. 16-25 ◽  
Author(s):  
G. Martínez-Fernández ◽  
L. Abecia ◽  
E. Ramos-Morales ◽  
A.I. Martin-García ◽  
E. Molina-Alcaide ◽  
...  

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 397-398
Author(s):  
Xiaoxia Dai ◽  
Kenneth Kalscheur ◽  
Pekka Huhtanen ◽  
Antonio Faciola

Abstract The effects of ruminal protozoa (RP) concentration on methane emissions from ruminants were evaluated in a meta-analysis using 67 publications reporting data from 85 in vivo experiments. Experiments included in the database reported methane emissions (g/kg DMI) and RP (log10 cells/mL) from the same group of animals. Quantitative data including diet chemical composition, ruminal fermentation, total tract digestibility, and milk production; and qualitative information including methane mitigation strategies, animal type, and methane measurement methods were also collected. The studies were conducted in dairy cows (51%), beef steers (32%) and small ruminants (32%). 70% of the studies reported a reduction in methane emissions. Supplemental lipids reduced methane emissions 95% of the time. The relationship between methane emissions and RP concentration was evaluated as a random coefficient model with the experiment as a random effect and weighted by the inverse pooled SEM squared, including the possibility of covariance between the slope and the intercept. A quadratic effect of RP concentration on methane emissions was detected: CH4= -28.8 + 12.2 × RP-0.64 × RP2. To detect potential interfering factors in the relationship, the influence of several qualitative and quantitative factors were separately tested. Acetate, butyrate, and isobutyrate molar proportions had positive relationships with methane emissions and influenced the relationship between RP concentration and methane emissions, where the presence of ruminal fermentation variables reduced the effects of RP concentration in methane emissions. Total tract digestibility of DM, OM, and CP had negative relationships while NDF digestibility had a positive relationship with methane emissions; however, they only changed the magnitude of intercept and slope of RP and RP2 for the relationship. For dairy cows, milk fat and protein concentrations had positive relationships and milk yield had a negative relationship with methane emissions and changed the magnitude of intercept and slope of RP and RP2 for the relationship.


animal ◽  
2014 ◽  
Vol 8 (11) ◽  
pp. 1807-1815 ◽  
Author(s):  
D. Vyas ◽  
E.J. McGeough ◽  
R. Mohammed ◽  
S.M. McGinn ◽  
T.A. McAllister ◽  
...  

2005 ◽  
Vol 81 (3) ◽  
pp. 365-374 ◽  
Author(s):  
J. M. Tricarico ◽  
J. D. Johnston ◽  
K. A. Dawson ◽  
K. C. Hanson ◽  
K. R. McLeod ◽  
...  

AbstractThe effects of anAspergillus oryzaeextract containing alpha-amylase activity (Amaize™, Alltech Inc., Nicholasville, KY) were examinedin vivoandin vitro. A lactating cow study employed 20 intact and four ruminally fistulated Holstein cows in a replicated 4 × 4 Latin-square design to examine the effects of four concentrations of dietary Amaize™ extract on milk production and composition, ruminal fermentation and serum metabolite concentrations. The treatment diets contained 0, 240, 480 or 720 alpha-amylase dextrinizing units (DU) per kg of total mixed ration (TMR) (dry-matter basis). The supplemental alpha-amylase increased the yields of milk (P= 0·02), fat (P= 0·02) and protein (P= 0·06) quadratically. The maximum milk yield was obtained when 240 DU per kg of TMR were offered. Ruminalin situstarch disappearance was not affected by alpha-amylase supplementation in lactating cows or ruminally cannulated steers. Supplemental alpha-amylase extract reduced the molar proportion of propionate in the rumen of steers (P= 0·08) and lactating cows (P= 0·04), and in rumen-simulating cultures (P= 0·04). The supplement also increased the molar proportions of acetate (P= 0·06) and butyrate (P= 0·05), and the serum beta-hydroxybutyrate (P= 0·01) and non-esterified fatty acid (P= 0·03) concentrations in lactating cows. The improvements in milk production appear to be a consequence of the effects of alpha-amylase on ruminal fermentation and the potential changes in nutrient metabolism that result from them. We conclude that supplemental alpha-amylase may be given to modify ruminal fermentation and improve milk and component yield in lactating Holstein cattle.


2013 ◽  
Vol 91 (8) ◽  
pp. 3867-3874 ◽  
Author(s):  
T. M. Boland ◽  
C. Quinlan ◽  
K. M. Pierce ◽  
M. B. Lynch ◽  
D. A. Kenny ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document