Numerical investigation and modeling of two-phase flow sweeping in rod bundles with mixing vane grid spacers

2015 ◽  
Vol 85 ◽  
pp. 403-417 ◽  
Author(s):  
Markus Zimmermann ◽  
Xu Cheng ◽  
Ivan Otic ◽  
Galina Sieber ◽  
Kevin Goodheart
Author(s):  
Josh Rosettani ◽  
Wael Ahmed ◽  
Philip Geddis ◽  
Lijun Wu ◽  
Bruce Clements

2021 ◽  
Vol 2088 (1) ◽  
pp. 012031
Author(s):  
Hossein Abdi ◽  
O I Melikhov ◽  
V I Melikhov

Abstract Experiments on two-phase flow across an in-line tube bundle are analyzed with the STEG code, which has been developed for modeling thermal-hydraulic processes in a horizontal steam generator (SG). An adiabatic, vertical two-phase flows of air-water across horizontal in-line, 5 x 20 rod bundles, with a pitch-to-diameter ratio P/D=1.3 are considered, the mass velocity is varied in the range 27 - 818 kg/m2s. The calculated values of void fraction in the tube bundle are compared with the experimental ones measured by a gamma densitometer. A reasonable agreement between the calculations and the experimental data is obtained.


2019 ◽  
Vol 135 ◽  
pp. 1-16 ◽  
Author(s):  
Omar Rafae Alomar ◽  
Rafie Rushdy Mohammed ◽  
Miguel A.A. Mendes ◽  
Subhashis Ray ◽  
Dimosthenis Trimis

Author(s):  
Quanyao Ren ◽  
Liangming Pan ◽  
Wenxiong Zhou ◽  
Tingpu Ye ◽  
Hang Liu ◽  
...  

In order to simulate the transfer of mass, momentum and energy in the gas-liquid two-phase flow system, tremendous work focused on the phenomenon, mechanisms and models for two-phase flow in different channels, such as circular pipe, rectangular channel, rod bundle and annulus. Drift-flux model is one of the widely used models for its simplicity and good accuracy, especially for the reactor safety analysis codes (RELAP5 and TRAC et al.) and sub-channel analysis code (COBRA, SILFEED and NASCA et al.). Most of the adopted drift-flux models in these codes were developed based on the void fraction measured in pipe and annulus, which were different with the actual nuclear reactor. Although some drift-flux models were developed for rod bundles, they were based on the void fraction on the whole cross-section not in subchannel in rod bundles due to the lack of effective measuring methods. A novel sub-channel impedance void meter (SCIVM) has been developed to measure the void fraction in sub-channel of 5 × 5 rod bundles, which is adopted to evaluate these existing drift-flux models for rod bundles. By comparison, the values of drift-flux parameters have large differences among different correlations, which are suggested to be reconsidered. Based on the experimental data and physical laws, Lellouche-Zolotar and Chexal-Lellouche correlations show a better performance for drift velocity. If the predicting error of void fraction is the only concerned parameter, Chen-Liu, Ishizuka-Inoue and Chexal-Lellouche correlations are recommended for averaged relative error less than 30%. More experiments are suggested to focus on the distribution parameter and drift velocity through their definition.


Author(s):  
Abdalsalam Ihmoudah ◽  
Mohamed M. Awad ◽  
Mohammad Azizur Rahman ◽  
Stephen D. Butt

Abstract Two-phase flow of gas/yield Pseudoplastic fluids can be found in different industrial applications like the chemical processes, oil industry, and petroleum transport in pipelines. In this study, experimental and numerical investigation of the influence of Rheological properties of non-Newtonians fluids in two-phase flow (gas/yield Pseudoplastic fluids) on slug characteristics in an upward vertical flow were performed. Different concentrations of Xanthan gum solutions (0.05%, 0.10%, and 0.15%, by w/w), which are referred to as non-Newtonian, yield Pseudoplastic behavior used as the working liquids and air as a gas. The experiments were conducted in an open-loop re-circulating system has a total length of 65 m to ensure phase mixing, and authorize flow regime patterns to develop. The vertical pipe has a diameter of 76.3 mm. API-compliant 8-speed rotational viscometer model 800 was used to measure the rheological properties of non-Newtonian fluids. Flow visualization and recording videos were achieved by A high-speed camera to a comparison between behavior of Newtonian and non-Newtonian fluids in the two-phase model. Pressure transducers used to measure high-response pressure. Computational fluid dynamics software (ANSYS fluent 2019 R3) was used for the numerical investigation. The volume of fluid (VOF) model has been chosen for tracking immiscible fluids. CFD simulation results compared to the experimental data. The slug behavior and shape were noticed to be affected by changing the rheological properties of the liquid phase. with increasing XG concentration at the same operations conditions, we found that non-uniform and random distribution of small bubbles due to the effective viscous force of a liquid phase.


Sign in / Sign up

Export Citation Format

Share Document