CFD/Monte-Carlo neutron transport coupling scheme, application to TRIGA reactor

2017 ◽  
Vol 110 ◽  
pp. 36-47 ◽  
Author(s):  
R. Henry ◽  
I. Tiselj ◽  
L. Snoj
2016 ◽  
Vol 6 (3) ◽  
pp. 16-30
Author(s):  
Huy Hiep Nguyen ◽  
Huu Tiep Nguyen ◽  
Viet Phu Tran ◽  
Tuan Khai Nguyen

The paper aims to develop an MCNP5-ORIGEN2 coupling scheme for burnup calculation. Specifically, the Monte Carlo neutron transport code (MCNP5) and the nuclides depletion and decay calculation code (ORIGEN2) are combined by data processing and linking files written in the PERL programming language. The validity and applicability of the developed coupling scheme are tested through predicting the neutronic and isotopic behavior of the “VVER-1000 LEU Assembly Computational Benchmark”. The MCNP5-ORIGEN2 coupling results showed a good agreement with the k-inf benchmark values within 600 pcm during the entire burnup history. In addition, the differences of isotopes concentration at the end of the burnup (40 MWd/kgHM) when compared with benchmark values were reasonable and generally within 6.5%. The developed coupling scheme also considered the shielding effect due to gadolinium isotopes and simulated well the depletion of isotopes as a function of the radial position in gadolinium bearing fuel rods.


Author(s):  
Cécile-Aline Gosmain ◽  
Sylvain Rollet ◽  
Damien Schmitt

In the framework of surveillance program dosimetry, the main parameter in the determination of the fracture toughness and the integrity of the reactor pressure vessel (RPV) is the fast neutron fluence on pressure vessel. Its calculated value is extrapolated using neutron transport codes from measured reaction rate value on dosimeters located on the core barrel. EDF R&D has developed a new 3D tool called EFLUVE3D based on the adjoint flux theory. This tool is able to reproduce on a given configuration the neutron flux, fast neutron fluence and reaction rate or dpa results of an exact Monte Carlo calculation with nearly the same accuracy. These EFLUVE3D calculations does the Source*Importance product which allows the calculation of the flux, the neutronic fluence (flux over 1MeV integrated on time) received at any point of the interface between the skin and the pressure vessel but also at the capsules of the pressurized water reactor vessels surveillance program and the dpa and reaction rates at different axial positions and different azimuthal positions of the vessel as well as at the surveillance capsules. Moreover, these calculations can be carried out monthly for each of the 58 reactors of the French current fleet in challenging time (less than 10mn for the total fluence and reaction rates calculations considering 14 different neutron sources of a classical power plant unit compared to more than 2 days for a classic Monte Carlo flux calculation at a given neutron source). The code needs as input: - for each reaction rate, the geometric importance matrix produced for a 3D pin by pin mesh on the basis of Green’s functions calculated by the Monte Carlo code TRIPOLI; - the neutron sources calculated on assemblies data (enrichment, position, fission fraction as a function of evolution), pin by pin power and irradiation. These last terms are based on local in-core activities measurements extrapolated to the whole core by use of the EDF core calculation scheme and a pin by pin power reconstruction methodology. This paper presents the fundamental principles of the code and its validation comparing its results to the direct Monte Carlo TRIPOLI results. Theses comparisons show a discrepancy of less than 0,5% between the two codes equivalent to the order of magnitude of the stochastic convergence of Monte Carlo results.


2020 ◽  
Vol 225 ◽  
pp. 03007
Author(s):  
Tanja Goričanec ◽  
Domen Kotnik ◽  
Žiga Štancar ◽  
Luka Snoj ◽  
Marjan Kromar

An approach for calculating ex-core detector response using Monte Carlo code MCNP was developed. As a first step towards ex-core detector response prediction a detailed MCNP model of the reactor core was made. A script called McCord was developed as a link between deterministic program package CORD-2 and Monte Carlo code MCNP. It automatically generates an MCNP input from the CORD-2 data. A detailed MCNP core model was used to calculate 3D power distributions inside the core. Calculated power distributions were verified by comparison to the CORD-2 calculations, which is currently used for core design calculation verification of the Krško nuclea power plant. For the hot zero power configuration, the deviations are within 3 % for majority of fuel assemblies and slightly higher for fuel assemblies located at the core periphery. The computational model was further verified by comparing the calculated control rod worth to the CORD-2 results. The deviations were within 50 pcm and considered acceptable. The research will in future be supplemented with the in-core and ex-core detector signal calculations and neutron transport outside the reactor core.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Sang Hoon Jang ◽  
Hyung Jin Shim

A simple method using the time-dependent Monte Carlo (TDMC) neutron transport calculation is presented to determine an effective detector position for the prompt neutron decay constant (α) measurement through the pulsed-neutron-source (PNS) experiment. In the proposed method, the optimum detector position is searched by comparing amplitudes of detector signals at different positions when their α estimates by the slope fitting are converged. The developed method is applied to the Pb-Bi-zoned ADS experimental benchmark at Kyoto University Critical Assembly. The α convergence time estimated by the TDMC PNS simulation agrees well with the experimental results. The α convergence time map and the corresponding signal amplitude map predicted by the developed method show that polyethylene moderator regions adjacent to fuel region are better positions than other candidates for the PNS α measurement.


Sign in / Sign up

Export Citation Format

Share Document