triga reactor
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 33)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 155 ◽  
pp. 108158
Author(s):  
Meng-Jen Wang ◽  
Glenn E. Sjoden ◽  
Amanda Foley ◽  
Swomitra K. Mohanty

2021 ◽  
Vol 253 ◽  
pp. 04006
Author(s):  
H. Ghninou ◽  
A. Gruel ◽  
A. Lyoussi ◽  
C. Reynard-Carette ◽  
C. El Younoussi ◽  
...  

Education, training and isotopes production are the most important uses of the Moroccan 2 MW TRIGA Mark II reactor situated at the National Center for Energy Sciences and Nuclear Techniques (CNESTEN, Morocco). To develop new R&D projects in research reactors, the particular and advanced knowledge of neutron and photon flux distribution, within and around the reactor core, is crucial. In order to precisely preparing the experiments in the CNESTEN’s TRIGA reactor, a detailed model was developed using the 3D continuous energy Monte Carlo code TRIPOLI-4 and the continuous energy cross-section data from the JEFF3.1.1 nuclear data library. This new model was used to carry out preliminary neutron and photon calculations to estimate flux levels in the irradiation channels as well as to calculate kinetic parameters of the reactor, core excess reactivity, integral control rods worth and power peaking factors. As a first step of the validation of the model, the obtained results were compared with the experimental ones available in the Final Safety Analysis Report (FSAR) of the TRIGA reactor. A study is being carried out at the end of which the results will be published as an evaluated benchmark. Furthermore, this work aims at experimentally characterize the reaction rates in various irradiation channels inside and outside the reactor core. The measurements are carried out using the neutron activation technique. To set up the experimental design for the activation experiments a series of preliminary calculations were performed using the TRIPOLI-4 model to calculate the expected gamma flux/intensity levels of various materials after irradiations in different positions in the irradiation facilities. Different activation foils with known characteristics are then irradiated and the activity of several isotopes is measured with the Gamma Spectrometry Method. The measured relative reaction rates are then compared with the calculated ones evaluated through the new TRIPOLI-4 reactor model. Fairly good agreement was found, which indicates that the new computational model is accurate enough to reproduce experiments.


2021 ◽  
Vol 253 ◽  
pp. 04018
Author(s):  
Clément Fausser ◽  
Nicolas Thiollay ◽  
Christophe Destouches ◽  
Loïc Barbot ◽  
Damien Fourmentel ◽  
...  

Constant improvements of the computational power and methods as well as demands of accurate and reliable measurements for reactor operation and safety require a continuous upgrade of the instrumentation. In particular, nuclear sensors used in nuclear fission reactors (research or power reactors) or in nuclear fusion facilities are operated under intense mixed neutron and gamma-ray fields, and need to be calibrated and modeled to provide selective and accurate neutron and gamma-ray measurements. The French Atomic Energy and Alternative Energies Commission (CEA) and the Jožef Stefan Institute (JSI) have started an experimental program dedicated to a detailed experimental benchmark with analysis using Monte Carlo particle transport calculations and a series of neutron and gamma-ray sensor types used in the JSI TRIGA Mark II reactor. CEA has setup a simplified TRIPOLI-4® modeling scheme of the JSI TRIGA reactor based on the information available in the IRPhEP benchmark in order to facilitate analysis of future neutron and gamma-ray measurements. These allow the CEA to perform a TRIPOLI-4 instrumentation calculation scheme benchmarked with the JSI MCNP model. This paper presents the main results of this CEA calculation scheme application and the analysis of their comparison to the JSI results obtained in 2012 with the MCNP5 & ENDF/B-VII.0 calculation scheme. This paper will conclude with some information about the new experimental program to be carried out in 2022 in the TRIGA reactor core.


2021 ◽  
Vol 247 ◽  
pp. 16002
Author(s):  
Vladimir Radulović ◽  
Klemen Ambrožič ◽  
Ivana Capan ◽  
Robert Bernat ◽  
Zoran Ereš ◽  
...  

In 2016, the “E-SiCure” project (standing for “Engineering Silicon Carbide for Border and Port Security”), funded by the NATO Science for Peace and Security Programme was launched. The main objective is to combine theoretical, experimental and applied research towards the development of radiation-hard SiC-based detectors of special nuclear materials (SNM), with the end goal to enhance border and port security barriers. Prototype neutron detectors, configured as 4H-SiC-based Schottky barrier diodes, were developed for the detection of secondary charged particles (tritons, alphas and lithium atoms) which are the result of thermal neutron reactions on 10B and 6LiF layers above the surface of the 4H-SiC diodes. We designed a stand-alone prototype detection system, consisting of a preamplifier, shaping amplifier and a multichannel analyser operated by a laptop computer, for testing of neutron detector prototypes at the Jožef Stefan Institute (JSI) TRIGA reactor using a broad beam of reactor neutrons. The reverse bias for the detector diode and the power to electronic system were provided by a standalone battery-powered voltage source. The detector functionality was established through measurements using an 241Am alpha particle source. Two dedicated experimental campaigns were performed at the JSI TRIGA reactor. The registered pulse height spectra from the detectors, using both 10B and 6LiF neutron converting layers, clearly demonstrated the neutron detection abilities of the SiC detector prototypes. The computed neutron detection sensitivity of the single prototype detectors demonstrates that scaling SiC detectors into larger arrays, of dimensions relevant for border and port radiation detectors, could enable neutron sensitivity levels matching gas-based detector technology.


2021 ◽  
Vol 253 ◽  
pp. 04019
Author(s):  
Vladimir Radulović ◽  
Loïc Barbot ◽  
Grégoire De Izarra ◽  
Julijan Peric ◽  
Igor Lengar

The availability of neutron fields with a high neutron flux, suitable for irradiation testing of nuclear instrumentation detectors relevant for applications in nuclear facilities such as material testing reactors (MTRs), nuclear power reactors and future fusion reactors is becoming increasingly limited. Over the last several years there has been increased interest in the experimental capabilities of the 250 kW Jožef Stefan Institute (JSI) TRIGA research reactor for such applications, however, the maximal achievable neutron flux in steady-state operation mode falls short of MTR-relevant conditions. The JSI TRIGA reactor can also operate in pulse mode, with a maximal achievable peak power of approximately 1 GW, for a duration of a few ms. A collaboration project between the JSI and the French Atomic and Alternative Energy Commission (CEA) was initiated to investigate absolute neutron flux measurements at very high neutron flux levels in reactor pulse operation. Such measurements will be made possible by special CEA-developed miniature fission chambers and modern data acquisition systems, supported by the JSI TRIGA instrumentation and activation dosimetry. Additionally, measurements of the intensity of Cherenkov light are proposed and being investigated as an alternative experimental method. This paper presents the preparatory activities for an exhaustive experimental campaign, which were carried out in 2019-2020, consisting of test measurements with not fully appropriate fission chambers, activation dosimetry and silicon photomultipliers (SiPMs) The presented results provide useful and promising experimental indications relevant for the design of the experimental campaign.


Sign in / Sign up

Export Citation Format

Share Document