Experimental study on the transverse mixing of 5 × 5 helical cruciform fuel assembly by wire mesh sensor

2021 ◽  
Vol 164 ◽  
pp. 108582
Author(s):  
Qi Zhang ◽  
Li Liu ◽  
Yao Xiao ◽  
Junsen Fu ◽  
Hanyang Gu
Author(s):  
Hiroki Takiguchi ◽  
Masahiro Furuya ◽  
Takahiro Arai ◽  
Kenetsu Shirakawa

Rapid thermal elevation in nuclear reactor is an important factor for nuclear safety. It is indispensable to develop a three-dimensional nuclear thermal transient analysis code and confirm its validity in order to accurately evaluate the effectiveness of the running nuclear safety measures when heating power of reactor core rapidly rises. However, the heat transfer characteristics such as reactivity feedback characteristics due to moderator density and the technical knowledge explaining the uncertainty are insufficient. In particular, the cross propagation behavior of vapor bubble (void) in cross section of fuel assembly is not grasped. This study evaluates the cross propagation void behavior in a simulated fuel assembly at time of rapid heat generation with a thermal hydraulic test loop including a 5 × 5 rod bundle having the heat generation profile in the flow cross sectional direction. In this paper, the branching heat output condition of transient cross propagation was investigated from visualization of high speed video camera and void fraction measurement by wire mesh sensor with the inlet flow rate 0.3m/s and the inlet coolant temperature 40°C, which are based on the transient safety analysis condition. In addition, we applied the particle imaging velocimetry (PIV) technique to measure liquid-phase velocity profile of the coolant in the transient cross flow and experimentally clarified the relationship with the cross flow.


2020 ◽  
Vol 165 ◽  
pp. 01025
Author(s):  
Liang Hong ◽  
Han Zhiguo ◽  
Wang Jing ◽  
Duli Kunjiang ◽  
Li Zhiyong

Because the flat air collector is simple in structure, reliable in operation, and resistant to cold and frost, it is more suitable for applications such as building heating. This paper presents a flat air collector with a mesh heat sink, and analyzes the effects of air flow, temperature difference between inlet and outlet, and wire mesh density on the heat collection efficiency of the collector. The results show that when the pore density is fixed, the heat collection efficiency increases with the increase of air flow rate, which is 10% higher than that of natural convection when the air flow rate is maximum; when the air flow rate is fixed, the heat collection efficiency increases with the increase of the pore density and the temperature difference between the inlet and outlet, which can be increased by 10% -20%.


Energy ◽  
2021 ◽  
pp. 121287
Author(s):  
Yunhao Cui ◽  
Jianxin Qiao ◽  
Bin Song ◽  
Xiaotao Wang ◽  
Zhaohui Yang ◽  
...  

2015 ◽  
Vol 289 ◽  
pp. 49-59 ◽  
Author(s):  
Jeong Kwan Suh ◽  
Jae Won Kim ◽  
Sun Guk Kwon ◽  
Jae Yong Lee ◽  
Hyoung Kyu Cho ◽  
...  

2011 ◽  
Vol 255-260 ◽  
pp. 2622-2626 ◽  
Author(s):  
Azmat Ullah ◽  
Khan Shahzada ◽  
Akhtar Naeem Khan ◽  
Amjad Naseer ◽  
Mohammad Ashraf ◽  
...  

This paper presents a study on seismic resistance of typical single and double storey masonry buildings constructed in the southern districts of Pakhthunkhwa, Pakistan. Two types of bricks; wooden and rice husk burnt bricks, have been investigated in combination with mud and cement-sand mortar. Plane and reinforced specimens have been tested in axial compression and diagonal compression. Analysis of the experimental results show that both single and double storey buildings constructed in the study area with mud mortar and mud plaster are seismically vulnerable. However application of the wire mesh on wall surface subsequently plastered increases the strength significantly and make the structure resistant to the earthquake forces.


Sign in / Sign up

Export Citation Format

Share Document