Conditioned measurement fused estimate Unscented Kalman filter for underwater target tracking using acoustic signals captured by Towed array

2021 ◽  
Vol 174 ◽  
pp. 107742
Author(s):  
D.V.A.N. Ravi Kumar
Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 740 ◽  
Author(s):  
Li ◽  
Zhao ◽  
Yu ◽  
Wei

Underwater target tracking system can be kept covert using the bearing-only or the bearing-Doppler measurements (passive measurements), which will reduce the risk of been detected. According to the characteristics of underwater target tracking, the square root unscented Kalman filter (SRUKF) algorithm, which is based on the Bayesian theory, was applied to the underwater bearing-only and bearing-Doppler non-maneuverable target tracking problem. Aiming at the shortcomings of the unscented Kalman filter (UKF), the SRUKF uses the QR decomposition and the Cholesky factor updating, in order to avoid that the process noise covariance matrix loses its positive definiteness during the target tracking period. The SRUKF uses sigma sampling to avoid the linearization of the nonlinear bearing-only and the bearing-Doppler measurements. To ensure the target state observability in underwater target tracking, the paper uses single maneuvering observer to track the single non-maneuverable target. The simulation results show that the SRUKF has better tracking performance than the extended Kalman filter (EKF) and the UKF in tracking accuracy and stability, and the computational complexity of the SRUKF algorithm is low.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M. Kavitha Lakshmi ◽  
S. Koteswara Rao ◽  
Kodukula Subrahmanyam

PurposeNowadays advancement in acoustic technology can be explored with marine assets. The purpose of the paper is pervasive computing underwater target tracking has aroused military and civilian interest as a key component of ocean exploration. While many pervasive techniques are currently found in the literature, there is little published research on the effectiveness of these paradigms in the target tracking context.Design/methodology/approachThe unscented Kalman filter (UKF) provides good results for bearing and elevation angles only tracking. Detailed methodology and mathematical modeling are carried out and used to analyze the performance of the filter based on the Monte Carlo simulation.FindingsDue to the intricacy of maritime surroundings, tracking underwater targets using acoustic signals, without knowing the range parameter is difficult. The intention is to find out the solution in terms of standard deviation in a three-dimensional (3D) space.Originality/valueA new method is found for the acceptance criteria for range, course, speed and pitch based on the standard deviation for bearing and elevation 3D target tracking using the unscented Kalman filter covariance matrix. In the Monte Carlo simulation, several scenarios are used and the results are shown.


Author(s):  
Mylapilli Nalini Santhosh ◽  
S. Koteswara Rao ◽  
Rudra Pratap Das ◽  
K. Lova Raju

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lakshmi M. Kavitha ◽  
Rao S. Koteswara ◽  
K. Subrahmanyam

Purpose Marine exploration is becoming an important element of pervasive computing underwater target tracking. Many pervasive techniques are found in current literature, but only scant research has been conducted on their effectiveness in target tracking. Design/methodology/approach This research paper, introduces a Shifted Rayleigh Filter (SHRF) for three-dimensional (3 D) underwater target tracking. A comparison is drawn between the SHRF and previously proven method Unscented Kalman Filter (UKF). Findings SHRF is especially suitable for long-range scenarios to track a target with less solution convergence compared to UKF. In this analysis, the problem of determining the target location and speed from noise corrupted measurements of bearing, elevation by a single moving target is considered. SHRF is generated and its performance is evaluated for the target motion analysis approach. Originality/value The proposed filter performs better than UKF, especially for long-range scenarios. Experimental results from Monte Carlo are provided using MATLAB and the enhancements achieved by the SHRF techniques are evident.


2020 ◽  
Author(s):  
Peng Gu ◽  
Zhongliang Jing ◽  
Liangbin Wu

AbstractOne purpose of target tracking is to estimate the states of targets, and unscented Kalman filter is one of the effective algorithms for estimating in the nonlinear tracking problem. Considering the characteristics of complex maneuverability, it is easy to reduce the tracking accuracy and cause divergence due to the mismatch between the system model and the practical target motion model. Adaptive fading factor is an effective counter to this problem, having been instrumental in solving accuracy and divergence problems. Fading factor can adaptively adjust covariance matrix online to compensate model mismatch error. Moreover, fading factor not only improves the filtering accuracy, but also automatically adjusts the error covariance in response to the different situation. The simulation results show that the adaptive fading factor unscented Kalman filter has more advantages in target tracking and it can be better applied to nonlinear target tracking.


Sign in / Sign up

Export Citation Format

Share Document