The distribution of pantograph aerodynamic noise on train external surfaces and the influence of flow

2022 ◽  
Vol 188 ◽  
pp. 108542
Author(s):  
Hui Li ◽  
Xiaowan Liu ◽  
David Thompson ◽  
Giacomo Squicciarini
Keyword(s):  
2021 ◽  
Vol 11 (7) ◽  
pp. 3241
Author(s):  
Gianmarco Battista ◽  
Paolo Chiariotti ◽  
Milena Martarelli ◽  
Paolo Castellini ◽  
Claudio Colangeli ◽  
...  

Localization and quantification of noise sources are important to fulfill customer and regulation requirements in a such competitive sector like automotive manufacturing. Wind tunnel testing and acoustic mapping techniques based on microphone arrays can provide accurate information on these aspects. However, it is not straightforward to get source positions and strengths in these testing conditions. In fact, the car is a 3D object that radiates noise from different parts simultaneously, involving different noise generation mechanisms such as tire noise and aerodynamic noise. Commonly, acoustic maps are produced on a 3D surface that envelopes the objects. However, this practice produces misleading and/or incomplete results, as acoustic sources can be generated outside the surface. When the hypothesis of sources on the model surface is removed, additional issues arise. In this paper, we propose exploiting an inverse method tailored to a volumetric approach. The aim of this paper is to investigate the issues to face when the method is applied to automotive wind tunnel testing. Two different kinds of problem must be considered: On the one hand, the results of inverse methods are strongly influenced by the problem definition, while, on the other hand, experimental conditions must be taken into account to get accurate results. These aspects have been studied making use of simulated experiments. Such a controlled simulation environment, by contrast to a purely experimental case, enables accurate assessment of both the localization and quantification performance of the proposed method. Finally, a set of scores is defined to evaluate the resulting maps with objective metrics.


2020 ◽  
pp. 1475472X2097838
Author(s):  
CK Sumesh ◽  
TJS Jothi

This paper investigates the noise emissions from NACA 6412 asymmetric airfoil with different perforated extension plates at the trailing edge. The length of the extension plate is 10 mm, and the pore diameters ( D) considered for the study are in the range of 0.689 to 1.665 mm. The experiments are carried out in the flow velocity ( U∞) range of 20 to 45 m/s, and geometric angles of attack ( αg) values of −10° to +10°. Perforated extensions have an overwhelming response in reducing the low frequency noise (<1.5 kHz), and a reduction of up to 6 dB is observed with an increase in the pore diameter. Contrastingly, the higher frequency noise (>4 kHz) is observed to increase with an increase in the pore diameter. The dominant reduction in the low frequency noise for perforated model airfoils is within the Strouhal number (based on the displacement thickness) of 0.11. The overall sound pressure levels of perforated model airfoils are observed to reduce by a maximum of 2 dB compared to the base airfoil. Finally, by varying the geometric angle of attack from −10° to +10°, the lower frequency noise is seen to increase, while the high frequency noise is observed to decrease.


Author(s):  
Xiaowei Hao ◽  
Zhigang Yang ◽  
Qiliang Li

With the development of new energy and intelligent vehicles, aerodynamic noise problem of pure electric vehicles at high speed has become increasingly prominent. The characteristics of the flow field and aerodynamic noise of the rearview mirror region were investigated by large eddy simulation, acoustic perturbation equations and reduction order analysis. By comparing the pressure coefficients of the coarse, medium and dense grids with wind tunnel test results, the pressure distribution, and numerical accuracy of the medium grid on the body are clarified. It is shown from the flow field proper orthogonal decomposition of the mid-section that the sum of the energy of the first three modes accounts for more than 16%. Based on spectral proper orthogonal decomposition, the peak frequencies of the first-order mode are 19 and 97 Hz. As for the turbulent pressure of side window, the first mode accounts for approximately 11.3% of the total energy, and its peak appears at 39 and 117 Hz. While the first mode of sound pressure accounts for about 41.7%, and the energy peaks occur at 410 and 546 Hz. Compared with traditional vehicle, less total turbulent pressure level and total sound pressure level are found at current electric vehicle because of the limited interaction between the rearview mirror and A-pillar.


Author(s):  
Dian Li ◽  
Xiaomin Liu ◽  
Lei Wang ◽  
Fujia Hu ◽  
Guang Xi

Previous publications have summarized that three special morphological structures of owl wing could reduce aerodynamic noise under low Reynolds number flows effectively. However, the coupling noise-reduction mechanism of bionic airfoil with trailing-edge serrations is poorly understood. Furthermore, while the bionic airfoil extracted from natural owl wing shows remarkable noise-reduction characteristics, the shape of the owl-based airfoils reconstructed by different researchers has some differences, which leads to diversity in the potential noise-reduction mechanisms. In this article, three kinds of owl-based airfoils with trailing-edge serrations are investigated to reveal the potential noise-reduction mechanisms, and a clean airfoil based on barn owl is utilized as a reference to make a comparison. The instantaneous flow field and sound field around the three-dimensional serrated airfoils are simulated by using incompressible large eddy simulation coupled with the FW-H equation. The results of unsteady flow field show that the flow field of Owl B exhibits stronger and wider-scale turbulent velocity fluctuation than that of other airfoils, which may be the potential reason for the greater noise generation of Owl B. The scale and magnitude of alternating mean convective velocity distribution dominates the noise-reduction effect of trailing-edge serrations. The noise-reduction characteristic of Owl C outperforms that of Barn owl, which suggests that the trailing-edge serrations can suppress vortex shedding noise of flow field effectively. The trailing-edge serrations mainly suppress the low-frequency noise of the airfoil. The trailing-edge serration can suppress turbulent noise by weakening pressure fluctuation.


2012 ◽  
Vol 19 ◽  
pp. 206-213
Author(s):  
DANG-GUO YANG ◽  
JIAN-QIANG LI ◽  
ZHAO-LIN FAN ◽  
XIN-FU LUO

An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.


2016 ◽  
Vol 57 ◽  
pp. 192-203 ◽  
Author(s):  
Zhen-Hua Wan ◽  
Hai-Hua Yang ◽  
Xing-Chen Zhang ◽  
De-Jun Sun

2014 ◽  
Vol 488-489 ◽  
pp. 886-891
Author(s):  
Ai Jian Zheng ◽  
Feng Niu ◽  
Hai Jiang Zhu

This paper presents two nose cones models and their numerical calculation of aerodynamic noise in high speed airflow field combining the analysis theory of fluid dynamics with the acoustic boundary element analysis method. The noise sound pressure levels (SPL) of these two models are calculated under the different speed airflow. And we compare the SPL of the better model with that of commercial nose cone models. These simulated results show that the aerodynamic noise of the nose cone with a ellipsoid head has lower flow-induced noise than that of commercial nose cone models at relative high air flow velocities at most frequencies.


Sign in / Sign up

Export Citation Format

Share Document