Electrochemical Tuning of Nickel Molybdate Nanorod Arrays towards Promoted Electrocatalytic Urea Oxidization

2021 ◽  
pp. 118220
Author(s):  
Ming Fang ◽  
Wen-Bo Xu ◽  
Yun Shen ◽  
Peijiang Cao ◽  
Shun Han ◽  
...  
2021 ◽  
Vol 56 (18) ◽  
pp. 11059-11070
Author(s):  
Xichen Yu ◽  
Qingqing Xing ◽  
Xiaoping Zhang ◽  
Hanlin Jiang ◽  
Fengren Cao

2021 ◽  
Vol 45 (7) ◽  
pp. 3463-3468
Author(s):  
Yang Li ◽  
Tao Wang ◽  
Bin Gao ◽  
Xiaoli Fan ◽  
Hao Gong ◽  
...  

Li-doped LaFeO3 nanorod arrays are used in photoelectrochemical water reduction.


2012 ◽  
Vol 4 (6) ◽  
pp. 2969-2977 ◽  
Author(s):  
Dian-bo Zhang ◽  
Shu-jie Wang ◽  
Ke Cheng ◽  
Shu-xi Dai ◽  
Bin-bin Hu ◽  
...  

2017 ◽  
Vol 67 ◽  
pp. 55-61 ◽  
Author(s):  
Xiao-Feng Su ◽  
Jian-Biao Chen ◽  
Ru-Mei He ◽  
Yan Li ◽  
Jian Wang ◽  
...  

2021 ◽  
Author(s):  
Nanasaheb M. Shinde ◽  
Siddheshwar D. Raut ◽  
Balaji G. Ghule ◽  
Krishna Chaitanya Gunturu ◽  
James J. Pak ◽  
...  

A promising electrode for hydrogen evolution reaction (HER) has been prepared via a reduction process to form NiF2 nanorod arrays directly grown on a 3D nickel foam.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ye Wang ◽  
Jiongdong Zhao ◽  
Yu Zhu ◽  
Shurong Dong ◽  
Yang Liu ◽  
...  

AbstractHere, we present integrated nanorod arrays on microfluidic chips for fast and sensitive flow-through immunoassays of physiologically relevant macromolecules. Dense arrays of Au nanorods are easily fabricated through one-step oblique angle deposition, which eliminates the requirement of advanced lithography methods. We report the utility of this plasmonic structure to improve the detection limit of the cardiac troponin I (cTnI) assay by over 6 × 105-fold, reaching down to 33.9 fg mL−1 (~1.4 fM), compared with an identical assay on glass substrates. Through monolithic integration with microfluidic elements, the device enables a flow-through assay for quantitative detection of cTnI in the serum with a detection sensitivity of 6.9 pg mL−1 (~0.3 pM) in <6 min, which was 4000 times lower than conventional glass devices. This ultrasensitive detection arises from the large surface area for antibody conjugation and metal-enhanced fluorescent signals through plasmonic nanostructures. Moreover, due to the parallel arrangement of flow paths, simultaneous detection of multiple cancer biomarkers, including prostate-specific antigen and carcinoembryonic antigen, has been fulfilled with increased signal-to-background ratios. Given the high performance of this assay, together with its simple fabrication process that is compatible with standard mass manufacturing techniques, we expect that the prepared integrated nanorod device can bring on-site point-of-care diagnosis closer to reality.


Author(s):  
Liang Zhao ◽  
Ding Chen ◽  
Shang Xu ◽  
Zhi Fang ◽  
Lin Wang ◽  
...  

Fast surface charge recombination and poor light capture capability are regarded as the two critical factors that hamper the photoelectrochemical (PEC) performance of photoanodes. In the present work, we employed...


Sign in / Sign up

Export Citation Format

Share Document