Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer

2013 ◽  
Vol 103 ◽  
pp. 581-587 ◽  
Author(s):  
C.A. Chung ◽  
Su-Wen Yang ◽  
Chien-Yuh Yang ◽  
Che-Weu Hsu ◽  
Pai-Yuh Chiu
2013 ◽  
Vol 732-733 ◽  
pp. 78-82
Author(s):  
Ling Gao ◽  
Wen Guang Geng ◽  
Xiao Xu Ma ◽  
Xiu Li Ma ◽  
Guang Liang Luo ◽  
...  

This paper presents an experimental study on total heat transfer coefficient (ht) in oscillating heat pipe heat exchanger hot air flow tunnels, ht plays an important role in the oscillating heat pipes design process. In this paper, ht and the convective heat transfer coefficient (h) was investigated by experimentally and theoretical calculation respectively. From experimental study, the relationship between the ratio of heat transfer coefficient and the relative humidity is obtained. The results show that the ratio of ht to h increases from 5 to 20 as the relative humidity of the hot gas increasing from 19.22% to 60%. According to the experimental data, a matched curve and an empirical equation were presented, which can be described as ht=h(1.87783+0.09631x+0.0032x2).


1980 ◽  
Vol 38 (5) ◽  
pp. 469-473
Author(s):  
M. N. Ivanovskii ◽  
I. V. Yagodkin ◽  
V. P. Sorokin ◽  
L. M. Kuznetsova

2008 ◽  
Vol 12 (3) ◽  
pp. 91-102 ◽  
Author(s):  
Lutful Mahmood ◽  
Razzaq Akhanda

An experimental study of three different cross-sections (circular, semicircular and rectangular) of micro heat pipes having same hydraulic diameter (D= 3mm) is carried out at three different inclination angles (0?, 45?, 90?) using water as the working fluid. Evaporator section of the pipe is heated by an electric heater and the condenser section is cooled by water circulation in an annular space between the condenser section and the water jacket. Temperatures at different locations of the pipe are measured using five calibrated K type thermocouples. Heat supply is varied using a voltage regulator which is measured by a precision ammeter and a voltmeter. It is found that thermal performance tends to deteriorate as the micro heat pipe is flattened. Thus among all cross-sections of the pipes circular cross-section exhibits the best thermal performance followed by semicircular and rectangular cross-sections. Moreover maximum heat transfer capability of the pipes also decreases with decreasing of its inclination angle. A correlation is developed using all the gathered data of the present study to predict the heat transfer coefficient of micro heat pipes of different cross-sections placed at different inclination angles.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
S. Razvarz ◽  
R. Jafari

This paper represents an experimental study about the effect of curves related to thermosyphons and heat pipes with different active fluids and inclination angle at the thermal efficiency. The nanofluid utilized in this work is an aqueous soluble of Al2O3 nanoparticles with 35 nm diameter in pure water. The test saturation level of nanoparticles is 0%, 1%, and 3%wt. All the experiments were conducted and repeated at inclination angle of 30°, 60°, and 90° (vertical). The article presents the gravity impacts on the heat transfer characteristics in different angles and the effects of working fluids and tilt angle of heat pipe tube by the addition of nanoparticles and weight fractions on the thermal efficiency of heat pipe at different inclination. According to the experimental results, the heat pipe at the tilt angle of 60° generates the superior results. At a particle volume concentration of 1%, the use of Al2O3/water nanofluid gives significantly higher heat transfer.


Sign in / Sign up

Export Citation Format

Share Document