Pilot verification of a low-tar two-stage coal gasification process with a fluidized bed pyrolyzer and fixed bed gasifier

2014 ◽  
Vol 115 ◽  
pp. 9-16 ◽  
Author(s):  
Xi Zeng ◽  
Fang Wang ◽  
Hongling Li ◽  
Yin Wang ◽  
Li Dong ◽  
...  
Author(s):  
Armin Silaen ◽  
Ting Wang

Numerical simulations of the coal gasification process inside a generic 2-stage entrained-flow gasifier fed with Indonesian coal at approximately 2000 metric ton/day are carried out. The 3D Navier–Stokes equations and eight species transport equations are solved with three heterogeneous global reactions, three homogeneous reactions, and two-step thermal cracking equation of volatiles. The chemical percolation devolatilization (CPD) model is used for the devolatilization process. This study is conducted to investigate the effects of different operation parameters on the gasification process including coal mixture (dry versus slurry), oxidant (oxygen-blown versus air-blown), and different coal distribution between two stages. In the two-stage coal-slurry feed operation, the dominant reactions are intense char combustion in the first stage and enhanced gasification reactions in the second stage. The gas temperature in the first stage for the dry-fed case is about 800 K higher than the slurry-fed case. This calls for attention of additional refractory maintenance in the dry-fed case. One-stage operation yields higher H2, CO and CH4 combined than if a two-stage operation is used, but with a lower syngas heating value. The higher heating value (HHV) of syngas for the one-stage operation is 7.68 MJ/kg, compared with 8.24 MJ/kg for two-stage operation with 75%–25% fuel distribution and 9.03 MJ/kg for two-stage operation with 50%–50% fuel distribution. Carbon conversion efficiency of the air-blown case is 77.3%, which is much lower than that of the oxygen-blown case (99.4%). The syngas heating value for the air-blown case is 4.40 MJ/kg, which is almost half of the heating value of the oxygen-blown case (8.24 MJ/kg).


2019 ◽  
Vol 41 (22) ◽  
pp. 2898-2906 ◽  
Author(s):  
Qing Liu ◽  
Rongjie Chen ◽  
Maorong Zeng ◽  
Zhaoyang Fei ◽  
Xian Chen ◽  
...  

2020 ◽  
Vol 7 (3) ◽  
pp. 516-535
Author(s):  
Tamer M. Ismail ◽  
Mingliang Shi ◽  
Jianliang Xu ◽  
Xueli Chen ◽  
Fuchen Wang ◽  
...  

Abstract With the help of Aspen Plus, a two-dimensional unsteady CFD model is developed to simulate the coal gasification process in a fixed bed gasifier. A developed and validated two dimensional CFD model for coal gasification has been used to predict and assess the viability of the syngas generation from coal gasification employing the updraft fixed bed gasifier. The process rate model and the sub-model of gas generation are determined. The particle size variation and char burning during gasification are also taken into account. In order to verify the model and increase the understanding of gasification characteristics, a set of experiments and numerical comparisons have been carried out. The simulated results in the bed are used to predict the composition of syngas and the conversion of carbon. The model proposed in this paper is a promising tool for simulating the coal gasification process in a fixed bed gasifier.


Fuel ◽  
2012 ◽  
Vol 93 ◽  
pp. 44-51 ◽  
Author(s):  
P.D. Chavan ◽  
T. Sharma ◽  
B.K. Mall ◽  
B.D. Rajurkar ◽  
S.S. Tambe ◽  
...  

2017 ◽  
Vol 62 (2) ◽  
pp. 253-268
Author(s):  
Tomasz Janoszek ◽  
Krzysztof Stańczyk ◽  
Adam Smoliński

AbstractThere are many complex physical and chemical processes, which take place among the most notable are the chemical reactions, mass and energy transport, and phase transitions. The process itself takes place in a block of coal, which properties are variable and not always easy to determine in the whole volume. The complexity of the phenomena results in the need for a construction of a complex model in order to study the process on the basis of simulation. In the present study attempts to develop a numerical model of the fixed bed coal gasification process in homogeneous solid block with a given geometry were mode. On the basis of analysis and description of the underground coal gasification simulated in the ex-situ experiment, a numerical model of the coal gasification process was developed. The model was implemented with the use of computational fluid dynamic CFD methods. Simulations were conducted using commercial numerical CFD code and the results were verified with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document