Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions

2019 ◽  
Vol 238 ◽  
pp. 696-720 ◽  
Author(s):  
Amin Moazami ◽  
Vahid M. Nik ◽  
Salvatore Carlucci ◽  
Stig Geving
2019 ◽  
Vol 887 ◽  
pp. 129-139 ◽  
Author(s):  
Giovanni Pernigotto ◽  
Alessandro Prada ◽  
Andrea Gasparella

Typical years are developed from the analysis of multi-year series, selecting actual months to assembly in a single reference year, representative of the long-term typical weather. Some statistical techniques are generally involved in the development process to ensure true frequencies, sequences and cross-correlations of the weather quantities: as regard the reference year built according to the European technical standard EN ISO 15927-4:2005, TRYEN, the method is based on the Finkelstein-Schafer statistics. In this work, we exploit the same statistic with a different target: to develop an extreme reference year, ERY, by identifying those candidate months far from being representative of the long-term weather data distribution. These new artificial extreme years are composed of statistically “non-representative” months warmer in the summer and colder in the winter - which means with daily dry bulb temperature and global solar irradiation higher in summer or lower in winter than the long-term averages respectively. The analysis is performed for five Italian localities belonging to the Alpine Regions and to Sicily. Aiming to assess the efficacy of the proposed procedure, TRYEN and ERY are compared and both used to simulate the energy performance of 48 simplified buildings, parametrically built by varying insulation level, windows’ size, orientation and SHGC and kind of opaque elements.


2018 ◽  
Vol 172 ◽  
pp. 181-191 ◽  
Author(s):  
Yang Geng ◽  
Wenjie Ji ◽  
Borong Lin ◽  
Jiajie Hong ◽  
Yingxin Zhu

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4107 ◽  
Author(s):  
Giovanni Barone ◽  
Annamaria Buonomano ◽  
Cesare Forzano ◽  
Adolfo Palombo

This paper focuses on the experimental validation of a building energy performance simulation tool by means of a comparative analysis between numerical results and measurements obtained on a real test room. The empirical tests were carried out for several months under variable weather conditions and in free-floating indoor temperature regime (switched off HVAC system). Measurements were exploited for validating an in-house simulation tool, implemented in MatLab and called DETECt, developed for dynamically assessing the energy performance of buildings. Results show that simulated indoor air and surface room temperatures resulted in very good agreement with the corresponding experimental data; the detected differences were often lower than 0.5 °C and almost always lower than 1 °C. Very low mean absolute and percentage errors were always achieved. In order to show the capabilities of the developed simulation tool, a suitable case study focused on innovative solar radiation high-reflective coatings, and infrared low-emissivity materials is also presented. The performance of these coatings and materials was investigated through a comparative analysis conducted to evaluate their heating and cooling energy saving potentials. Simulation results, obtained for the real test cell considered as equipped with such innovative coatings and material, show that for the weather zone of Naples a 5% saving is obtained both in summer and in winter by simultaneously adopting a high-reflectance coating and a low- emissivity plaster for roof/external walls and interior walls, respectively.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 166 ◽  
Author(s):  
Yassaghi ◽  
Hoque

It is becoming increasingly crucial to develop methods and strategies to assess building performance under the changing climate and to yield a more sustainable and resilient design. However, the outputs of climate models have a coarse spatial and temporal resolution and cannot be used directly in building energy simulation tools. This paper reviews methods to develop fine spatial and temporal weather files that incorporate climate emissions scenarios by means of downscaling. An overview of the climate change impact on building energy performance is given, and potential adaptation and mitigation factors in response to the changing climate in the building sector are presented. Also, methods to reflect, propagate, and partition main sources of uncertainties in both weather files and buildings are summarized, and a sample approach to propagate the uncertainties is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document