Building energy performance forecasting: A multiple linear regression approach

2019 ◽  
Vol 253 ◽  
pp. 113500 ◽  
Author(s):  
G. Ciulla ◽  
A. D'Amico
2019 ◽  
Vol 16 (4) ◽  
pp. 303-310 ◽  
Author(s):  
Yi Lu ◽  
Shuo Wang ◽  
Jianying Wang ◽  
Guangya Zhou ◽  
Qiang Zhang ◽  
...  

The occurrence of epidemic avian influenza (EAI) not only hinders the development of a country's agricultural economy, but also seriously affects human beings’ life. Recently, the information collected from Google Trends has been increasingly used to predict various epidemics. In this study, using the relevant keywords in Google Trends as well as the multiple linear regression approach, a model was developed to predict the occurrence of epidemic avian influenza. It was demonstrated by rigorous cross-validations that the success rates achieved by the new model were quite high, indicating the predictor will become a very useful tool for hospitals and health providers.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 94
Author(s):  
Tara L. Cavalline ◽  
Jorge Gallegos ◽  
Reid W. Castrodale ◽  
Charles Freeman ◽  
Jerry Liner ◽  
...  

Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15–17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35–40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.


Sign in / Sign up

Export Citation Format

Share Document