Energy systems for climate change mitigation: A systematic review

2020 ◽  
Vol 263 ◽  
pp. 114602 ◽  
Author(s):  
Jia-Ning Kang ◽  
Yi-Ming Wei ◽  
Lan-Cui Liu ◽  
Rong Han ◽  
Bi-Ying Yu ◽  
...  
2020 ◽  
Author(s):  
Nariê Souza ◽  
Thayse Hernandes ◽  
Karina M. B. Bruno ◽  
Daniele S. Henzler ◽  
Otávio Cavalett

<p>Driven by the expected population growth, the world faces now the challenge of meeting energy demands of about 9 billion people on the next decades and avoid dangerous climate change effects. In this context, Renewable Energy Systems (RES) are a key strategy to decarbonize the power sector and contribute to the climate change mitigation targets. In the Special Report on Climate Change and Land, IPCC calls attention to possible trade-offs, adverse side-effects and implications to sustainable development that the large-scale deployment of bioenergy may cause. A comprehensive understanding of the sustainability profile along the entire life-cycle of electricity production is fundamental if we want to realize the transition to cleaner technologies in the energy sector. In this study we analyze the water, land and climate impacts of electricity production systems in the context of the Sustainable Development Goals (SDGs). We focus our analysis in the electricity production from sugarcane straw in Brazil, since there is a great opportunity for better using this lignocellulosic material for bioenergy applications. We relate appropriate Life Cycle Assessment (LCA) indicators to multiple SDGs, considering attainable and potential sugarcane yields, derived from agroclimatic modeling. When discussing the sustainability of bioenergy production, a broader sustainability analysis, as provided by the SDGs, can help to identify water, land and climate nexus and suggest possible technological solutions for minimizing possible trade-offs among the different impacts. Our analysis demonstrates the nexus implications of electricity production from sugarcane biomass to the context of the SDGs, as well as the spatially explicit environmental implications of electricity production form sugarcane biomass.</p><p>Keywords: renewable energy systems, life cycle assessment, climate change mitigation, sustainable development</p>


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6452
Author(s):  
Dalia Streimikiene ◽  
Tomas Baležentis ◽  
Artiom Volkov ◽  
Mangirdas Morkūnas ◽  
Agnė Žičkienė ◽  
...  

The paper deals with the exposition of the main barriers and drivers of renewable energy usage in rural communities. Climate change mitigation is causing governments, policymakers, and international organizations worldwide to embark on policies, leading to increased use of renewable energy sources and improvement of energy efficiency. Climate change mitigation actions, including the Green Deal strategy in the EU, require satisfying the expanding energy demand and complying with the environmental restrictions. At the same time, the prevailing market structure and infrastructure relevant to the energy systems are undergoing a crucial transformation. Specifically, there has been a shift from centralized to more decentralized and interactive energy systems that are accompanied by a low-carbon energy transition. Smart Grid technology and other innovations in the area of renewable energy microgeneration technologies have enabled changes in terms of the roles of energy users: they can act as prosumers that are producing and consuming energy at the same time. Renewable energy generation that is allowing for deeper involvement of the citizens may render higher social acceptance, which, in turn, fuels the low-carbon energy transition. The collective energy prosumption in the form of energy cooperatives has become a widespread form of renewable energy initiatives in rural communities. Even though renewable energy consumption provides a lot of benefits and opportunities for rural communities, the fast penetration of renewables and energy prosumption encounter several important barriers in the rural areas. This paper analyses the main barriers and drivers of renewable energy initiatives in rural areas and provides policy implications for the low-carbon energy transition in rural areas.


Author(s):  
Brendan Moore ◽  
Caroline Verfuerth ◽  
Angela Mae Minas ◽  
Christianne Tipping ◽  
Sarah Mander ◽  
...  

2019 ◽  
Vol 4 ◽  
pp. 205 ◽  
Author(s):  
Stephanie Jarmul ◽  
Zara Liew ◽  
Andrew Haines ◽  
Pauline Scheelbeek

Food systems contribute greatly to global climate change due to their substantial contributions to greenhouse gas emissions, water use, and resource allocation. In addition, current food systems fail to deliver healthy and sustainable foods for all, with obesity as well as undernourishment remaining a pertinent global issue. Mounting pressures such as population growth and urbanisation urge rapid and transformational adaptations in food systems to sustainably feed a growing population. Sustainable diets have been promoted as a potential climate change mitigation strategy, and are characterized by high plant based foods and reduced animal-sourced and processed foods. While the evidence base on the potential health and environmental impacts of shifts towards sustainable diets has been growing rapidly over the past decade, there has been no recent synthesis of the evidence surrounding the health and climate mitigation benefits of sustainable consumption patterns. This systematic review will synthesize the evidence of both empirical and modelling studies assessing the direct health outcomes (such as all-cause mortality and body mass index) as well as environmental impacts (greenhouse gas emissions, land use, water use etc.) of shifts towards sustainable diets. Eight literature databases will be searched to identify studies published between 1999-2019 that report both health and environmental outcomes of sustainable diets. Evidence will be mapped and subsequently analysed based on the comparability of results and reported outcomes.


2020 ◽  
Vol 15 (12) ◽  
pp. 123008
Author(s):  
Nikravech Mariam ◽  
Kwan Valerie ◽  
Dobernig Karin ◽  
Wilhelm-Rechmann Angelika ◽  
Langen Nina

Sign in / Sign up

Export Citation Format

Share Document