Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O

2022 ◽  
Vol 305 ◽  
pp. 117902
Author(s):  
Qing-Cui Wan ◽  
Zhenyuan Yin ◽  
Qiang Gao ◽  
Hu Si ◽  
Bo Li ◽  
...  
2021 ◽  
Vol 406 ◽  
pp. 127174 ◽  
Author(s):  
Qiang Gao ◽  
Zhenyuan Yin ◽  
Jianzhong Zhao ◽  
Dong Yang ◽  
Praveen Linga

1975 ◽  
Vol 15 (05) ◽  
pp. 411-424 ◽  
Author(s):  
A. Finol ◽  
S.M. Farouq Ali

Abstract A two-phase, two-dimensional black oil simulator was developed for simulating reservoir production behavior with simultaneously occurring reservoir formation compaction and ground subsidence at the surface.The flow equations were solved by both alternating direction implicit procedure and strongly implicit procedure. Reservoir compaction was described on the basis of the experimental data reported. The magnitude of areal subsidence at the surface was calculated using reservoir compaction, utilizing the recently developed theory of poroelasticity. poroelasticity. Computer runs were used to generate a variety of data, such as reservoir Pressure variation with oil production, for different reservoir compaction production, for different reservoir compaction coefficients. It was found that the average reservoir pressure increased with the Compaction coefficient pressure increased with the Compaction coefficient for a given cumulative oil production.The model was used for generating the reservoir formation profiles, as well as the ground subsidence bowls for a variety of conditions. It was found that the subsidence behavior strongly depends on the depth of burial. For example, with an increase in the depth, the reservoir bottom surface may actually uplift, while the top surface subsides.The model was also used for studying the effect of subsidence on pressure buildup behavior. The calculated reservoir pressure was higher in a compacting than in a noncompacting reservoir, taking into account the variation of permeability with compaction.Another phase studied was the effect of rebound on reservoir performance when gas is injected into the formation. Even though rebound is small in practice (on the order of 10 percent of subsidence), practice (on the order of 10 percent of subsidence), the effect was clearly evident in the reservoir pressure-production behavior. However, when there pressure-production behavior. However, when there was no rebound, gas injection simply inhibited compaction.Finally, the model was used for simulating the reported oil production and subsidence history of one of the Bolivar Coast oil fields in the Western Venezuela. Fair agreement was obtained between the observed and the predicted behavior. Introduction The phenomenon of ground subsidence associated with production of oil or gas from underground hydrocarbon reservoirs is not common; however, it does present environmental problems in a few oil-producing areas around the world. Notable examples are the Wilmington oil field, below Long Beach, Calif. where almost 30 ft of subsidence have been recorded, and the oil fields near and under Lake Maracaibo in Venezuela, where the surface has subsided as much as 10 ft. Other cases have been reported in Harris County, Tex., in the Niigata district of Japan, and in the Po Delta in Italy.Numerous causes may give rise to ground subsidence, either natural or as a result of man's activities. However, as far as the problem at hand is concerned, the observed land subsidence is considered to be a result of reservoir compaction, resulting from pore pressure decline in reservoirs that meet certain specific geometrical and structural conditions. The changes in the petrophysical properties of reservoir rocks caused by compaction properties of reservoir rocks caused by compaction have been studied to some extent, as well as the influence of such changes on the fluid production behavior of the reservoir. However, very little has been accomplished in relating the compaction of the underground reservoir with the subsidence occurring at the surface. Among the few studies conducted on this problem, the most realistic are those that consider subsidence above a disk-shaped reservoir, in which a uniform pressure reduction has occurred. These studies do not simulate the fluid production behavior of the compacting reservoir as such; this is considered to be known and is used to determine the compaction of the reservoir and the accompanying subsidence. SPEJ P. 411


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2937
Author(s):  
Shmulik Pinkert

The geotechnical properties of methane-hydrate-bearing sediments (MHBS) are commonly investigated in the laboratory by using artificial hydrate formations in sandy specimens. Analyses of MHBS saturated with gas or water (in addition to methane-hydrate) showed significant mechanical differences between the two pore-filling states. This paper discusses the unique dilatancy behavior of gas-saturated MHBS, with comparison to water-saturated test results of previously-published works. It is shown that the significant compaction of gas-saturated samples is related to internal tensile forces, which are absent in water-saturated samples. The conceptual link between the internal tensile forces and the compaction characteristics is demonstrated through mechanical differences between pure sand and cemented sand. The paper establishes the link between internal adhesion in gas-saturated MHBS and the unique dilation response by using a stress–dilatancy analysis.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yanlong Li ◽  
Chuqiao He ◽  
Nengyou Wu ◽  
Qiang Chen ◽  
Changling Liu ◽  
...  

Optimization of the depressurization pathways plays a crucial role in avoiding potential geohazards while increasing hydrate production efficiency. In this study, methane hydrate was formed in a flexible plastic vessel and then gas production processes were conducted at constant confining pressure and constant confining temperature. The CMG-STARS simulator was applied to match the experimental gas production behavior and to derive the hydrate intrinsic dissociation constant. Secondly, fluid production behavior, pressure-temperature ( P ‐ T ) responses, and hydrate saturation evolution behaviors under different depressurization pathways were analyzed. The results show that integrated gas-water ratio (IGWR) decreases linearly with the increase in depressurizing magnitude in each step, while it rises logarithmically with the increase in the number of steps. Under the same initial average hydrate saturation and the same total pressure-drop magnitude, a slow and multistage depressurization strategy would help to increase the IGWR and avoid severe temperature drop. The pore pressure rebounds logarithmically once the gas production is suspended, and would decrease to the regular level instantaneously once the shut-in operation is ended. We speculate that the shut-in operation could barely affect the IGWR and formation P ‐ T response in the long-term level.


Sign in / Sign up

Export Citation Format

Share Document