Evaluating heat pump system design methods towards a sustainable heat supply in residential buildings

2022 ◽  
Vol 308 ◽  
pp. 118204
Author(s):  
Christian Vering ◽  
Laura Maier ◽  
Katharina Breuer ◽  
Hannah Krützfeldt ◽  
Rita Streblow ◽  
...  
2013 ◽  
Vol 732-733 ◽  
pp. 564-570 ◽  
Author(s):  
Ying Ning Hu ◽  
Ya Zhao Liu ◽  
Jun Lin ◽  
Yan Wang

A ground source heat pump system of combined office and residential buildings in hot summer and warm winter region is introduced. The system performance is studied through the experiment, and the performance of underground heat balance is analyzed by TRNSYS. The results show the superiority and applicability of the ground source heat pump system.


Author(s):  
Masahito Oguma ◽  
Takeshi Matsumoto ◽  
Takao Kakizaki

Feasibility of a ground source heat pump (GSHP) system with pile heat exchangers for use in houses is evaluated through a numerical simulation. This GSHP system differs from ordinary borehole-type GSHP systems because short foundation piles installed at close intervals are used as heat exchangers. It is shown that the annual heat supply provided by this GSHP system is able to satisfy the demand of a house due to the air-source exchange at ground surface.


2017 ◽  
Vol 9 (5) ◽  
pp. 797 ◽  
Author(s):  
Longcang Shu ◽  
Rui Xiao ◽  
Zhonghui Wen ◽  
Yuezan Tao ◽  
Peigui Liu

2021 ◽  
Vol 289 ◽  
pp. 05005
Author(s):  
Ivan Sokolov ◽  
Artem Ryzhenkov ◽  
Elizaveta Tyabut

The climatic conditions in Moscow limit to a certain extent the utilization of renewable energy sources for heat supply. Long heating period, relatively low average daily sunshine hours during heating period, and low outside temperatures act as barriers to realising the full potential of renewable energy sources. The paper presents an evaluation of feasibility and effectiveness of using various renewable energy sources in the heat supply system of Block 23 of the National research university «MPEI». The system arrangement for heat supply of the building with renewable energy sources is described. Experimental data have been obtained on the basis of this system. The calculated time dependences of building heat consumption and heat pump system (HPS) outputs are given. In addition, for the air-source heat pump system, the dependence on the outdoor temperature is given. Values of HPS efficiency indices are also presented. A comparative analysis of the efficiency of air-source HPS and liquid-to-liquid HPS with a geothermal circuit in winter conditions is carried out.


2018 ◽  
Vol 22 (5) ◽  
pp. 2203-2213 ◽  
Author(s):  
Magdalena Wolf ◽  
Thomas Detzlhofer ◽  
Tobias Proll

In this paper, the thermodynamic and economic efficiency of three different heat supply processes are compared, based on exergy flows and costs of heat. A gas turbine process with a heat recovery boiler, a gas and steam turbine combined cycle process and a high temperature heat pump system recovering waste heat are analysed. The aim is to provide heat as 4 bar(abs) saturated steam. The economic analysis bases on the comparison of the consumption-related costs of heat, the capital-related costs of heat, and the operation-related costs of heat. The results show that the heat pump system has higher exergetic efficiency than the gas turbine or the gas turbine combined cycle process. For the consumption related costs, the economic calculation shows that the operation of a heat pump, working with a coefficient of performance of four and for a natural gas price of 25 ?/MWh, is the cheapest way of heat production as long as the electricity price is lower than 45 ?/MWh. For the period from January 2013 until June 2016 the total costs of heat, based on real gas and electricity prices from the European Energy Exchange, are calculated and analysed. The results show that the share of heat provided by the heat pump system varies between 45% and 76%. Especially in 2013 and 2014, the economic conditions for operating heat pumps were very good. Since October 2015 the natural gas prices have seen a decrease which favours industrial heat supply with combined heat and power systems.


2019 ◽  
Vol 136 ◽  
pp. 01045
Author(s):  
WANG Kai ◽  
MIN Jie ◽  
SHENG Xuelei ◽  
WANG Haitao

The long-term stable operation of soil source heat pump system depends on the recovery characteristics of soil temperature field. Using DEST-h model of Hefei a high-rise residential buildings and FLUENT software to simulate software of soil source heat pump are analyzed through the summer and autumn season recovery after the change of soil temperature field around the buried pipe. It is pointed out that the intermittent operation of the compensation tower soil-coupled heat pump is beneficial to promote the recovery of soil temperature field. It has certain engineering application value for the improvement of soil source heat pump performance in hot summer and cold winter area.


Sign in / Sign up

Export Citation Format

Share Document