scholarly journals Analysis of a rotating FGMEE circular disk with variable thickness under thermal environment

2017 ◽  
Vol 45 ◽  
pp. 900-924 ◽  
Author(s):  
Ting Dai ◽  
Hong-Liang Dai
1965 ◽  
Vol 87 (2) ◽  
pp. 258-264 ◽  
Author(s):  
C. D. Mote

The approximate free vibration characteristics of centrally clamped, variable thickness disks are analyzed by the Rayleigh-Ritz technique. Natural frequencies of transverse vibration are computed, taking into consideration rotational and thermal in-plane stresses as well as purposely induced initial stresses. Initial stresses can significantly raise the minimum disk natural frequency throughout a prescribed rotational and thermal environment. The fundamental mode of disk vibration is one of zero nodal circles and either zero, one, or two nodal diameters, depending upon the disk geometry and the rotational-thermal environment.


2019 ◽  
Vol 26 (1-2) ◽  
pp. 73-87 ◽  
Author(s):  
Roshan Lal ◽  
Rahul Saini

The vibration of functionally graded circular plates of variable thickness under a thermal environment is analyzed when the nodal lines are concentric circles by using the generalized differential quadrature method for the nonlinear temperature distribution in the thickness direction. The parabolic variation in thickness along the radial direction is controlled by a taper constant. The plate material is graded in the transverse direction and its mechanical properties are temperature-dependent. The thermal environment over the top and bottom surfaces of the plate is assumed to be uniform. Hamilton's principle has been used in obtaining the governing differential equations for thermo-elastic equilibrium and axisymmetric motion for such a plate model employing Kirchhoff plate theory. Numerical results for thermal displacements and natural frequencies of clamped and simply supported plates have been obtained using MATLAB. The effect of the taper constant, volume fraction index, and temperature difference on the vibration characteristics has been analyzed for the lowest three modes of vibration. A study in which the plate material has temperature-independent properties has also been performed. The accuracy of the present technique is verified by comparing the results with those available in the literature.


Sign in / Sign up

Export Citation Format

Share Document