Region-specific exercises versus general exercises approaches in the management of spinal and peripheral musculoskeletal disorders: a systematic review with meta-analyses of randomized controlled trials.

Author(s):  
Philippe Ouellet ◽  
Simon Lafrance ◽  
Andrea Pizzi ◽  
Jean-Sebastien Roy ◽  
Jeremy Lewis ◽  
...  

Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 479
Author(s):  
Tatiana Sidiropoulou ◽  
Kalliopi Christodoulaki ◽  
Charalampos Siristatidis

A pre-procedural ultrasound of the lumbar spine is frequently used to facilitate neuraxial procedures. The aim of this review is to examine the evidence sustaining the utilization of pre-procedural neuraxial ultrasound compared to conventional methods. We perform a systematic review of randomized controlled trials with meta-analyses. We search the electronic databases Medline, Cochrane Central, Science Direct and Scopus up to 1 June 2019. We include trials comparing a pre-procedural lumbar spine ultrasound to a non-ultrasound-assisted method. The primary endpoints are technical failure rate, first-attempt success rate, number of needle redirections and procedure time. We retrieve 32 trials (3439 patients) comparing pre-procedural lumbar ultrasounds to palpations for neuraxial procedures in various clinical settings. Pre-procedural ultrasounds decrease the overall risk of technical failure (Risk Ratio (RR) 0.69 (99% CI, 0.43 to 1.10), p = 0.04) but not in obese and difficult spinal patients (RR 0.53, p = 0.06) and increase the first-attempt success rate (RR 1.5 (99% CI, 1.22 to 1.86), p < 0.0001, NNT = 5). In difficult spines and obese patients, the RR is 1.84 (99% CI, 1.44 to 2.3; p < 0.0001, NNT = 3). The number of needle redirections is lower with pre-procedural ultrasounds (SMD = −0.55 (99% CI, −0.81 to −0.29), p < 0.0001), as is the case in difficult spines and obese patients (SMD = −0.85 (99% CI, −1.08 to −0.61), p < 0.0001). No differences are observed in procedural times. Ιn conclusion, a pre-procedural ultrasound provides significant benefit in terms of technical failure, number of needle redirections and first attempt-success rate. Τhe effect of pre-procedural ultrasound scanning of the lumbar spine is more significant in a subgroup analysis of difficult spines and obese patients.



2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Pierre Côté ◽  
Jan Hartvigsen ◽  
Iben Axén ◽  
Charlotte Leboeuf-Yde ◽  
Melissa Corso ◽  
...  

Abstract Background A small proportion of chiropractors, osteopaths, and other manual medicine providers use spinal manipulative therapy (SMT) to manage non-musculoskeletal disorders. However, the efficacy and effectiveness of these interventions to prevent or treat non-musculoskeletal disorders remain controversial. Objectives We convened a Global Summit of international scientists to conduct a systematic review of the literature to determine the efficacy and effectiveness of SMT for the primary, secondary and tertiary prevention of non-musculoskeletal disorders. Global summit The Global Summit took place on September 14–15, 2019 in Toronto, Canada. It was attended by 50 researchers from 8 countries and 28 observers from 18 chiropractic organizations. At the summit, participants critically appraised the literature and synthesized the evidence. Systematic review of the literature We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, the Cumulative Index to Nursing and Allied Health, and the Index to Chiropractic Literature from inception to May 15, 2019 using subject headings specific to each database and free text words relevant to manipulation/manual therapy, effectiveness, prevention, treatment, and non-musculoskeletal disorders. Eligible for review were randomized controlled trials published in English. The methodological quality of eligible studies was assessed independently by reviewers using the Scottish Intercollegiate Guidelines Network (SIGN) criteria for randomized controlled trials. We synthesized the evidence from articles with high or acceptable methodological quality according to the Synthesis without Meta-Analysis (SWiM) Guideline. The final risk of bias and evidence tables were reviewed by researchers who attended the Global Summit and 75% (38/50) had to approve the content to reach consensus. Results We retrieved 4997 citations, removed 1123 duplicates and screened 3874 citations. Of those, the eligibility of 32 articles was evaluated at the Global Summit and 16 articles were included in our systematic review. Our synthesis included six randomized controlled trials with acceptable or high methodological quality (reported in seven articles). These trials investigated the efficacy or effectiveness of SMT for the management of infantile colic, childhood asthma, hypertension, primary dysmenorrhea, and migraine. None of the trials evaluated the effectiveness of SMT in preventing the occurrence of non-musculoskeletal disorders. Consensus was reached on the content of all risk of bias and evidence tables. All randomized controlled trials with high or acceptable quality found that SMT was not superior to sham interventions for the treatment of these non-musculoskeletal disorders. Six of 50 participants (12%) in the Global Summit did not approve the final report. Conclusion Our systematic review included six randomized clinical trials (534 participants) of acceptable or high quality investigating the efficacy or effectiveness of SMT for the treatment of non-musculoskeletal disorders. We found no evidence of an effect of SMT for the management of non-musculoskeletal disorders including infantile colic, childhood asthma, hypertension, primary dysmenorrhea, and migraine. This finding challenges the validity of the theory that treating spinal dysfunctions with SMT has a physiological effect on organs and their function. Governments, payers, regulators, educators, and clinicians should consider this evidence when developing policies about the use and reimbursement of SMT for non-musculoskeletal disorders.





2019 ◽  
Vol 10 (6) ◽  
pp. 1076-1088 ◽  
Author(s):  
Michelle A Lee-Bravatti ◽  
Jifan Wang ◽  
Esther E Avendano ◽  
Ligaya King ◽  
Elizabeth J Johnson ◽  
...  

ABSTRACT Evidence suggests that eating nuts may reduce the risk of cardiovascular disease (CVD). We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating almond consumption and risk factors for CVD. MEDLINE, Cochrane Central, Commonwealth Agricultural Bureau, and previous systematic reviews were searched from 1990 through June 2017 for RCTs of ≥3 wk duration that evaluated almond compared with no almond consumption in adults who were either healthy or at risk for CVD. The most appropriate stratum was selected with an almond dose closer to 42.5 g, with a control most closely matched for macronutrient composition, energy intake, and similar intervention duration. The outcomes included risk factors for CVD. Random-effects model meta-analyses and subgroup meta-analyses were performed. Fifteen eligible trials analyzed a total of 534 subjects. Almond intervention significantly decreased total cholesterol (summary net change: −10.69 mg/dL; 95% CI: −16.75, −4.63 mg/dL), LDL cholesterol (summary net change: −5.83 mg/dL; 95% CI: −9.91, −1.75 mg/dL); body weight (summary net change: −1.39 kg; 95% CI: −2.49, −0.30 kg), HDL cholesterol (summary net change: −1.26 mg/dL; 95% CI: −2.47, −0.05 mg/dL), and apolipoprotein B (apoB) (summary net change: −6.67 mg/dL; 95% CI: −12.63, −0.72 mg/dL). Triglycerides, systolic blood pressure, apolipoprotein A1, high-sensitivity C-reactive protein, and lipoprotein (a) showed no difference between almond and control in the main and subgroup analyses. Fasting blood glucose, diastolic blood pressure, and body mass index significantly decreased with almond consumption of >42.5 g compared with ≤42.5 g. Almond consumption may reduce the risk of CVD by improving blood lipids and by decreasing body weight and apoB. Substantial heterogeneity in eligible studies regarding almond interventions and dosages precludes firmer conclusions.



2011 ◽  
Vol 121 (7) ◽  
pp. 1555-1564 ◽  
Author(s):  
Derek J. Hoare ◽  
Victoria L. Kowalkowski ◽  
Sujin Kang ◽  
Deborah A. Hall




Sign in / Sign up

Export Citation Format

Share Document