Specific phase modulation and infrared photon confinement in solar selective absorbers

2020 ◽  
Vol 18 ◽  
pp. 100533 ◽  
Author(s):  
Xiaoyu Wang ◽  
Haibo Hu ◽  
Xiaoyun Li ◽  
Junhua Gao ◽  
Zhenyu Wang ◽  
...  
2016 ◽  
Vol 2 (1) ◽  
Author(s):  
Marcelo A Montemurro ◽  
Damián H Zanette

Abstract In written language, the choice of specific words is constrained by both grammatical requirements and the specific semantic context of the message to be transmitted. To a significant degree, the semantic context is in turn affected by a broad cultural and historical environment, which also influences matters of style and manners. Over time, those environmental factors leave an imprint in the statistics of language use, with some words becoming more common and other words being preferred less. Here we characterize the patterns of language use over time based on word statistics extracted from more than 4.5 million books written over a period of 308 years. We find evidence of novel systematic oscillatory patterns in word use with a consistent period narrowly distributed around 14 years. The specific phase relationships between different words show structure at two independent levels: first, there is a weak global phase modulation that is primarily linked to overall shifts in the vocabulary across time; and second, a stronger component dependent on well defined semantic relationships between words. In particular, complex network analysis reveals that semantically related words show strong phase coherence. Ultimately, these previously unknown patterns in the statistics of language may be a consequence of changes in the cultural framework that influences the thematic focus of writers.


Author(s):  
Z.M. Wang ◽  
J.P. Zhang

High resolution electron microscopy reveals that antiphase domain boundaries in β-Ni3Nb have a hexagonal unit cell with lattice parameters ah=aβ and ch=bβ, where aβ and bβ are of the orthogonal β matrix. (See Figure 1.) Some of these boundaries can creep “upstairs” leaving an incoherent area, as shown in region P. When the stepped boundaries meet each other, they do not lose their own character. Our consideration in this work is to estimate the influnce of the natural misfit δ{(ab-aβ)/aβ≠0}. Defining the displacement field at the boundary as a phase modulation Φ(x), following the Frenkel-Kontorova model [2], we consider the boundary area to be made up of a two unit chain, the upper portion of which can move and the lower portion of the β matrix type, assumed to be fixed. (See the schematic pattern in Figure 2(a)).


2014 ◽  
Vol E97.B (10) ◽  
pp. 2102-2109
Author(s):  
Tsubasa TASHIRO ◽  
Kentaro NISHIMORI ◽  
Tsutomu MITSUI ◽  
Nobuyasu TAKEMURA

Author(s):  
Yin S Ng ◽  
William Lo ◽  
Kenneth Wilsher

Abstract We present an overview of Ruby, the latest generation of backside optical laser voltage probing (LVP) tools [1, 2]. Carrying over from the previous generation of IDS2700 systems, Ruby is capable of measuring waveforms up to 15GHz at low core voltages 0.500V and below. Several new optical capabilities are incorporated; these include a solid immersion lens (SIL) for improved imaging resolution [3] and a polarization difference probing (PDP) optical platform [4] for phase modulation detection. New developments involve Jitter Mitigation, a scheme that allows measurements of jittery signals from circuits that are internally driven by the IC’s onboard Phase Locked Loop (PLL). Additional timing features include a Hardware Phase-Locked Loop (HWPLL) scheme for improved locking of the LVP’s Mode-Locked Laser (MLL) to the tester clock as well as a clockless scheme to improve the LVP’s usefulness and user friendliness. This paper presents these new capabilities and compares these with those of the previous generation of LVP systems [5, 6].


Sign in / Sign up

Export Citation Format

Share Document