Research on a novel robot mooring system based on dual-parallel elastic under-actuated mechanisms

2022 ◽  
Vol 119 ◽  
pp. 103020
Author(s):  
Tieshi Zhao ◽  
Shixing Ding ◽  
Feng Gao ◽  
Hui Bian ◽  
Chang Wang ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Rabih Ali Khodr ◽  
Riyadh Saad Shiban ◽  
Bassim Abdulhadi Nawaz ◽  
Saleem Parvez Mistry
Keyword(s):  

2021 ◽  
Vol 9 (2) ◽  
pp. 103
Author(s):  
Dongsheng Qiao ◽  
Binbin Li ◽  
Jun Yan ◽  
Yu Qin ◽  
Haizhi Liang ◽  
...  

During the long-term service condition, the mooring line of the deep-water floating platform may fail due to various reasons, such as overloading caused by an accidental condition or performance deterioration. Therefore, the safety performance under the transient responses process should be evaluated in advance, during the design phase. A series of time-domain numerical simulations for evaluating the performance changes of a Floating Production Storage and Offloading (FPSO) with different broken modes of mooring lines was carried out. The broken conditions include the single mooring line or two mooring lines failure under ipsilateral, opposite, and adjacent sides. The resulting transient and following steady-state responses of the vessel and the mooring line tensions were analyzed, and the corresponding influence mechanism was investigated. The accidental failure of a single or two mooring lines changes the watch circle of the vessel and the tension redistribution of the remaining mooring lines. The results indicated that the failure of mooring lines mainly influences the responses of sway, surge, and yaw, and the change rule is closely related to the stiffness and symmetry of the mooring system. The simulation results could give a profound understanding of the transient-effects influence process of mooring line failure, and the suggestions are given to account for the transient effects in the design of the mooring system.


2021 ◽  
Vol 9 (6) ◽  
pp. 581
Author(s):  
Hongrae Park ◽  
Sungjun Jung

A cost-effective mooring system design has been emphasized for traditional offshore industry applications and in the design of floating offshore wind turbines. The industry consensus regarding mooring system design is mainly inhibited by previous project experience. The design of the mooring system also requires a significant number of design cycles. To take aim at these challenges, this paper studies the application of an optimization algorithm to the Floating Production Storage and Offloading (FPSO) mooring system design with an internal turret system at deep-water locations. The goal is to minimize mooring system costs by satisfying constraints, and an objective function is defined as the minimum weight of the mooring system. Anchor loads, a floating body offset and mooring line tensions are defined as constraints. In the process of optimization, the mooring system is analyzed in terms of the frequency domain and time domain, and global and local optimization algorithms are also deployed towards reaching the optimum solution. Three cases are studied with the same initial conditions. The global and local optimization algorithms successfully find a feasible mooring system by reducing the mooring system cost by up to 52%.


Author(s):  
Jorge Mendoza ◽  
Jacopo Paglia ◽  
Jo Eidsvik ◽  
Jochen Köhler

Mooring systems that are used to secure position keeping of floating offshore oil and gas facilities are subject to deterioration processes, such as pitting corrosion and fatigue crack growth. Past investigations show that pitting corrosion has a significant effect on reducing the fatigue resistance of mooring chain links. In situ inspections are essential to monitor the development of the corrosion condition of the components of mooring systems and ensure sufficient structural safety. Unfortunately, offshore inspection campaigns require large financial commitments. As a consequence, inspecting all structural components is unfeasible. This article proposes to use value of information analysis to rank identified inspection alternatives. A Bayesian Network is proposed to model the statistical dependence of the corrosion deterioration among chain links at different locations of the mooring system. This is used to efficiently update the estimation of the corrosion condition of the complete mooring system given evidence from local observations and to reassess the structural reliability of the system. A case study is presented to illustrate the application of the framework.


2020 ◽  
Vol 91 ◽  
pp. 102118
Author(s):  
Junbo Zhang ◽  
Hiroki Shimizu ◽  
Hirotaka Nakashima ◽  
Yoichi Mizukami ◽  
Takero Yoshida ◽  
...  

2013 ◽  
Vol 321-324 ◽  
pp. 815-818
Author(s):  
Fang Ze Zhao ◽  
Bao Wei Song ◽  
Xiao Xu Du

Underwater mooring platforms which anchored by the anchor and cable have a certain function of the platform mooring at a certain depth. In this paper, the motion model of underwater mooring system was built through analyseing the motion characteristics of the cable geometry and the force of the cable. And the motion simulation of underwater mooring platform with ocean current was done. The results show that the motion of underwater mooring platform is stable.


Author(s):  
Will Brindley ◽  
Andrew P. Comley

In recent years a number of high profile mooring failures have emphasised the high risk nature of this element of a floating structure. Semi-submersible Mobile Offshore Drilling Units (MODUs) operating in the harsh North Sea environment have experienced approximately 3 mooring failures every 2 years, based on an average population of 34 units. In recognition of the high mooring failure rates, the HSE has introduced recommendations for more stringent mooring strength requirements for units operating on the UK Continental Shelf (UKCS) [17]. Although strength requirements are useful to assess the suitability of a mooring design, they do not provide an insight into the question: what is the reliability of the mooring system? This paper aims to answer this question by evaluating failure statistics over the most recent decade of available data. Mooring failure rates are compared between the Norwegian Continental Shelf (NCS), the UKCS, and with industry code targets to understand how overall reliability is related to the strength capacity of a mooring system. The failure statistics suggest that a typical MODU operating in the UKCS would experience a mooring line failure in heavy weather approximately every 20 operating years. This failure rate appears to be several orders of magnitude greater than industry targets used to calibrate mooring codes. Despite the increased strength requirements for the NCS, failure rates do not appear to be lower than the UKCS. This suggests that reliability does not correlate well with mooring system strength. As a result, designing to meet the more rigorous HSE requirements, which would require extensive upgrades to existing units, may not significantly increase mooring system reliability. This conclusion needs to be supported with further investigation of failure statistics in both the UKCS and NCS. In general, work remains to find practical ways to further understand past failures and so improve overall reliability.


Author(s):  
Øystein Gabrielsen ◽  
Kjell Larsen

The Aasta Hansteen spar in the Norwegian Sea is designed to be moored with a taut polyester rope mooring system. The water depth at the field is 1300 meters, and due to the short installation season the most efficient hookup is with pre-installed mooring lines, which require the mooring lines to be laid down on the seabed. DNV certification does not allow seabed contact for polyester ropes unless proven that no soil ingress and damage takes place. To be able to certify the ropes Statoil developed a test method including contact with soil, rope movement and forced water flow through the filter construction. Full scale tests were performed with actual rope and Aasta Hansteen soil, both in laboratory and at site. This paper discusses the certification requirements and presents adequate qualification test together with results from testing.


Sign in / Sign up

Export Citation Format

Share Document