Numerical model for two-phase solidification problem in a pipe

2004 ◽  
Vol 24 (17-18) ◽  
pp. 2501-2509 ◽  
Author(s):  
R. Conde ◽  
M.T. Parra ◽  
F. Castro ◽  
J.M. Villafruela ◽  
M.A. Rodrı́guez ◽  
...  
2012 ◽  
Vol 9 (1) ◽  
pp. 47-52
Author(s):  
R.Kh. Bolotnova ◽  
V.A. Buzina

The two-dimensional and two-phase model of the gas-liquid mixture is constructed. The validity of numerical model realization is justified by using a comparative analysis of test problems solution with one-dimensional calculations. The regularities of gas-saturated liquid outflow from axisymmetric vessels for different geometries are established.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2511
Author(s):  
Jintao Liu ◽  
Di Xu ◽  
Shaohui Zhang ◽  
Meijian Bai

This paper investigates the physical processes involved in the water filling and air expelling process of a pipe with multiple air valves under water slow filling condition, and develops a fully coupledwater–air two-phase stratified numerical model for simulating the process. In this model, the Saint-Venant equations and the Vertical Average Navier–Stokes equations (VANS) are respectively applied to describe the water and air in pipe, and the air valve model is introduced into the VANS equations of air as the source term. The finite-volume method and implicit dual time-stepping method (IDTS) with two-order accuracy are simultaneously used to solve this numerical model to realize the full coupling between water and air movement. Then, the model is validated by using the experimental data of the pressure evolution in pipe and the air velocity evolution of air valves, which respectively characterize the water filling and air expelling process. The results show that the model performs well in capturing the physical processes, and a reasonable agreement is obtained between numerical and experimental results. This agreement demonstrates that the proposed model in this paper offers a practical method for simulating water filling and air expelling process in a pipe with multiple air valves under water slow filling condition.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750063 ◽  
Author(s):  
A. M. Hegab ◽  
S. A. Gutub ◽  
A. Balabel

This paper presents the development of an accurate and robust numerical modeling of instability of an interface separating two-phase system, such as liquid–gas and/or solid–gas systems. The instability of the interface can be refereed to the buoyancy and capillary effects in liquid–gas system. The governing unsteady Navier–Stokes along with the stress balance and kinematic conditions at the interface are solved separately in each fluid using the finite-volume approach for the liquid–gas system and the Hamilton–Jacobi equation for the solid–gas phase. The developed numerical model represents the surface and the body forces as boundary value conditions on the interface. The adapted approaches enable accurate modeling of fluid flows driven by either body or surface forces. The moving interface is tracked and captured using the level set function that initially defined for both fluids in the computational domain. To asses the developed numerical model and its versatility, a selection of different unsteady test cases including oscillation of a capillary wave, sloshing in a rectangular tank, the broken-dam problem involving different density fluids, simulation of air/water flow, and finally the moving interface between the solid and gas phases of solid rocket propellant combustion were examined. The latter case model allowed for the complete coupling between the gas-phase physics, the condensed-phase physics, and the unsteady nonuniform regression of either liquid or the propellant solid surfaces. The propagation of the unsteady nonplanar regression surface is described, using the Essentially-Non-Oscillatory (ENO) scheme with the aid of the level set strategy. The computational results demonstrate a remarkable capability of the developed numerical model to predict the dynamical characteristics of the liquid–gas and solid–gas flows, which is of great importance in many civilian and military industrial and engineering applications.


Author(s):  
Sarra Zoghlami ◽  
Cédric Béguin ◽  
Stéphane Étienne

To reduce the damage caused by induced vibrations due to two-phase cross flow on tube bundles in heat exchangers, a deep understanding of the different sources of this phenomenon is required. For this purpose, a numerical model was previously developed to simulate the quasi periodic forces on the tube bundle due to two-phase cross flow. An Euler-Lagrange approach is adopted to describe the flow. The Euler approach describes the continuous phase (liquid) using potential flow. The dispersed phase is assumed to have no interaction on liquid flow. Based on visual observation, static vortices behind the tube are introduced. The Lagrange approach describes the dispersed phase (gas). The model allows bubbles to split up or to coalesce. The forces taken into account acting on the bubbles are the buoyancy, the drag and induced drag, the added mass and induced added mass and impact force (bubble-bubble and bubble-tube). Forces taken into account acting on the tubes are impact forces and induced drag and added mass forces. This model allows us to obtain quasi periodic force on tube induced by two-phase cross flow of relative good magnitude and frequency contains. The model still needs improvement to bring us closer to experimental data of force, for example by introducing a dependency between the void ratio and the intensity of the vortex and by taking into account the bubbles deformation.


2021 ◽  
Author(s):  
M. Mohseni ◽  
C. Guedes Soares

Abstract The wave interaction with cylinders placed in proximity results in significant modification of the wave field, wave-induced processes, and wave loading. The evaluation of such a complex wave regime and accurate assessment of the wave loading requires an efficient and accurate numerical model. Concerning the wave scattering types identified by Swan et al. (2015) and lateral progressive edge waves, this paper presents the application of a two-phase Computational Fluid Dynamics (CFD) model to carry out a detailed investigation of nonlinear wave field surrounding a pair of columns placed in the tandem arrangement in the direction of wave propagation and corresponding harmonics. The numerical analysis is conducted using the Unsteady Reynolds-Averaged Navier-Stokes/VOF model based on the OpenFOAM framework combined with the olaFlow toolbox for wave generation/absorption. For the simulations, the truncated cylinders are assumed vertical and surface piercing with a circular cross-section subjected to regular, non-breaking fifth-order Stokes waves propagating with moderate steepness in deep water. Primarily, the numerical model is validated with experimental data provided by ITTC (OEC)[1] for a single cylinder. Future, the given simulations are conducted for different centre-to-centre distances between the tandem large cylinders. The results show the evolution of a strong wave diffraction pattern and consequently high wave amplification harmonics around cylinders are apparent.


Author(s):  
Olubunmi Popoola ◽  
Ayobami Bamgbade ◽  
Yiding Cao

An effective design option for a cooling system is to use a two-phase pumped cooling loop to simultaneously satisfy the temperature uniformity and high heat flux requirements. A reciprocating-mechanism driven heat loop (RMDHL) is a novel heat transfer device that could attain a high heat transfer rate through a reciprocating flow of the two-phase working fluid inside the heat transfer device. Although the device has been tested and validated experimentally, analytical or numerical study has not been undertaken to understand its working mechanism and provide guidance for the device design. The objective of this paper is to develop a numerical model for the RMDHL to predict its operational performance under different working conditions. The developed numerical model has been successfully validated by the existing experimental data and will provide a powerful tool for the design and performance optimization of future RMDHLs. The study also reveals that the maximum velocity in the flow occurs near the wall rather than at the center of the pipe, as in the case of unidirectional steady flow. This higher velocity near the wall may help to explain the enhanced heat transfer of an RMDHL.


2020 ◽  
Author(s):  
Nicholas S. Tavouktsoglou ◽  
Aggelos Dimakopoulos ◽  
Jeremy Spearman ◽  
Richard J. S. Whitehouse

Abstract Submerged water jet causing soil excavation is a typical water-soil interaction process that occurs widely in many engineering disciplines. In hydraulic engineering for instance, a typical example would be scour downstream of headcuts, culverts, or dam spillways. In port and waterway engineering, erosion of the channel bed or quay wall by the propellers of passing ships are also typical water jet/soil interaction problems. In ocean engineering, trenching by impinging high-velocity water jets has been used as an efficient method for cable and pipeline burial. At present, physical modelling and simple prediction equations have been the main practical engineering tool for evaluating scour in these situations. However, with the increasing computational power of modern computers and the development of new Computational Fluid Dynamics (CFD) solvers, scour prediction in such engineering problems has become possible. In the present work three-dimensional (3D) numerical modelling has been applied to reproduce the capability of a pair of water jets to backfill an excavated trench. The simulations are carried out using a state-of-the-art three-dimensional Eulerian two-phase scour model based on the open source CFD software OpenFOAM. The fluid phase is resolved by solving modified Navier-Stokes equations, which take into consideration the influence of the solid phase, i.e., the soil particles. This paper first presents a validation of the numerical model against vertical jet erosion tests from the literature and conducted at HR Wallingford. The results of the model show good agreement with the experimental tests, with the numerical model predicting the scour hole depth and extent with good accuracy. The paper then presents a validation of the model’s ability to reproduce deposition which is evaluated through a comparison with settling velocity data and empirical formulations found in literature, again with the model showing good agreement. Finally, the model is applied to a prototype cable burial problem using a commercially available controlled flow jet excavator. The study found that the use of water jets can be effective (subject to confirmation of the time-scale required for real operations) for performing backfill operations but that the effectiveness is closely related to the type of sediment and selection of an appropriate jet discharge. As a result, in order for the water jet method to be effective for backfill, there is a requirement for a good description of the variation in sediment type along the trench and a requirement for the jet discharge to be varied as different sediment types are encountered.


Sign in / Sign up

Export Citation Format

Share Document