Heat extraction from a salinity-gradient solar pond using in pond heat exchanger

2006 ◽  
Vol 26 (16) ◽  
pp. 1858-1865 ◽  
Author(s):  
M.R. Jaefarzadeh
2017 ◽  
Vol 139 (4) ◽  
Author(s):  
A. A. Abdullah ◽  
K. A. Lindsay

The quality of the stability of the nonconvective zone of a salinity-gradient solar pond (SGSP) is investigated for an operating protocol in which the flushing procedure exactly compensates for evaporation losses from the solar pond and its associated evaporation pond. The mathematical model of the pond uses simplified, but accurate, constitutive expressions for the physical properties of aqueous sodium chloride. Also, realistic boundary conditions are used for the behaviors of the upper and lower convective zones (LCZs). The performance of a salinity-gradient solar pond is investigated in the context of the weather conditions at Makkah, Saudi Arabia, for several thickness of upper convective zone (UCZ) and operating temperature of the storage zone. Spectral collocation based on Chebyshev polynomials is used to assess the quality of the stability of the pond throughout the year in terms of the time scale for the restoration of disturbances in temperature, salinity, and fluid velocity underlying the critical eigenstate. The critical eigenvalue is found to be real and negative at all times of year indicating that the steady-state configuration of the pond is always stable, and suggesting that stationary instability would be the anticipated mechanism of instability. Annual profiles of surface temperature, salinity, and heat extraction are constructed for various combinations for the thickness of the upper convective zone and storage zone temperature.


2017 ◽  
Vol 118 ◽  
pp. 226-237 ◽  
Author(s):  
Kamran Manzoor ◽  
Sher Jamal Khan ◽  
Yousuf Jamal ◽  
Muhammad Aamir Shahzad

2015 ◽  
Vol 76 (5) ◽  
Author(s):  
Baljit Singh ◽  
Altenaijy Saoud ◽  
Muhammed Fairuz Remeli ◽  
Lai Chet Ding ◽  
Abhijit Date ◽  
...  

Solar pond is one source of renewable thermal energy. The solar pond collects and stores thermal energy at the lower zone of the solar pond. The temperature at the lower zone can reach up to 90 °C. The solar pond is capable storing thermal energy for a long period. The stored thermal energy can be converted into electricity by using thermoelectric generators. These thermoelectric generators can be operated using the cold and hot zones from a solar pond. In this paper, the experimental investigation of power generation from the solar pond using thermoelectric generator and simple heat exchanger is discussed. A maximum of 7.02 W of electrical power output was obtained from a simple heat exchanger with 40 thermoelectric modules.


2016 ◽  
Vol 46 (5) ◽  
pp. 2854-2859 ◽  
Author(s):  
Baljit Singh ◽  
Nuraida ‘Aadilia Baharin ◽  
Muhammad Fairuz Remeli ◽  
Amandeep Oberoi ◽  
Abhijit Date ◽  
...  

2004 ◽  
Vol 126 (2) ◽  
pp. 759-767 ◽  
Author(s):  
Huanmin Lu ◽  
Andrew H. P. Swift ◽  
Herbert D. Hein, ◽  
John C. Walton

The El Paso salinity gradient solar pond, initiated in 1983, has been in operation since 1985. Through 16 years of research and operation, the El Paso Solar Pond has successfully demonstrated applications including desalination, waste brine management, industrial process heat production, and electricity generation; and has developed and implemented key technical advancements to improve the technical viability and economic feasibility of salinity gradient solar ponds, including: 1) an automated instrumentation monitoring system, 2) a stability analysis strategy and high temperature (60–90°C) gradient maintenance methods, 3) a scanning injection technique for improved salinity gradient construction and maintenance, 4) new liner technology, and 5) an improved heat extraction system.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


2021 ◽  
Vol 169 ◽  
pp. 738-751
Author(s):  
Ji Li ◽  
Wei Xu ◽  
Jianfeng Li ◽  
Shuai Huang ◽  
Zhao Li ◽  
...  

2019 ◽  
Vol 160 ◽  
pp. 231-238 ◽  
Author(s):  
Mohammed Bawahab ◽  
Hosam Faqeha ◽  
Quoc Line Ve ◽  
Ahmadreza Faghih ◽  
Abhijit Date ◽  
...  

1985 ◽  
Vol 20 (3) ◽  
pp. 189-205 ◽  
Author(s):  
M.T. Kangas ◽  
P.D. Lund

Sign in / Sign up

Export Citation Format

Share Document