Validation of a mathematical model for encapsulated phase change material flat slabs for cooling applications

2011 ◽  
Vol 31 (14-15) ◽  
pp. 2340-2347 ◽  
Author(s):  
Ming Liu ◽  
Wasim Saman ◽  
Frank Bruno
2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Chenzhen Liu ◽  
Ling Ma ◽  
Zhonghao Rao ◽  
Yimin Li

In this study, micro-encapsulated phase change material (microPCM) was successfully synthesized by emulsion polymerization method, using magnesium sulfate heptahydrate (MSH) as core material and urea resin (UR) as shell material. The surface morphologies and particle size distributions of the microPCM were tested by scanning electron microscopy (SEM) and laser particle size analyzer. The chemical structure of microPCM was analyzed by Fourier-transform infrared spectroscopy (FTIR). The thermal properties were investigated by differential scanning calorimetry (DSC) and thermal conductivity coefficient instrument, respectively.


Solar Energy ◽  
2019 ◽  
Vol 181 ◽  
pp. 464-474 ◽  
Author(s):  
Lukmon Owolabi Afolabi ◽  
Zulkifli Mohamad Ariff ◽  
Puteri Sri Melor Megat-Yusoff ◽  
Hussain H. Al-Kayiem ◽  
Adiat Ibironke Arogundade ◽  
...  

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Sarada Kuravi ◽  
Krishna M. Kota ◽  
Jianhua Du ◽  
Louis C. Chow

Microchannels are used in applications where large amount of heat is produced. Phase change material (PCM) slurries can be used as a heat transfer fluid in microchannels as they provide increased heat capacity during the melting of phase change material. For the present numerical investigation, performance of a nano-encapsulated phase change material slurry in a manifold microchannel heat sink was analyzed. The slurry was modeled as a bulk fluid with varying specific heat. The temperature field inside the channel wall is solved three dimensionally and is coupled with the three dimensional velocity and temperature fields of the fluid. The model includes the microchannel fin or wall effect, axial conduction along the length of the channel, developing flow of the fluid and not all these features were included in previous numerical investigations. Influence of parameters such as particle concentration, inlet temperature, melting range of the PCM, and heat flux is investigated, and the results are compared with the pure single phase fluid.


Sign in / Sign up

Export Citation Format

Share Document