Numerical study of heat transfer performance of single-phase heat sinks with micro pin-fin structures

2013 ◽  
Vol 58 (1-2) ◽  
pp. 68-76 ◽  
Author(s):  
Haleh Shafeie ◽  
Omid Abouali ◽  
Khosrow Jafarpur ◽  
Goodarz Ahmadi
2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Yu Rao ◽  
Yamin Xu ◽  
Chaoyi Wan

A numerical study was conducted to investigate the effects of dimple depth on the flow and heat transfer characteristics in a pin fin-dimple channel, where dimples are located spanwisely between the pin fins. The study aimed at promoting the understanding of the underlying convective heat transfer mechanisms in the pin fin-dimple channels and improving the cooling design for the gas turbine components. The flow structure, friction factor, and heat transfer performance of the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–80,800. The study showed that, compared to the pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed a dimple depth-dependent flow friction performance for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors over the studied Reynolds number range. Furthermore, the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the heat transfer enhancement and flow friction reduction phenomenon in the pin fin-dimple channels.


Author(s):  
Jian Yang ◽  
Min Zeng ◽  
Qiuwang Wang

Pin fin heat exchanges are often used in cooling of high thermal loaded electronic components due to their excellent heat transfer performance. However, the pressure drop in such heat exchanges is usually much higher than that in others, so their overall heat transfer performance is seriously reduced. In order to reduce the pressure drop and improve the overall heat transfer performance for pin fin heat exchangers, porous metal pin arrays are used and the performance of fluid flow and heat transfer in heat exchanger unit cells are numerically studied. The Forchheimer-Brinkman extended Darcy model and two-equation heat transfer model for porous media are employed and the effects of Reynolds number (Re), permeability (K) and pin fin cross-section forms are studied in detail. The results show that, with proper selection of governing parameters, the overall heat transfer performance of porous pin fin heat exchanger is much better than that of traditional solid pin fin heat exchanger; the overall heat transfer performance of long elliptic porous pin fin heat exchanger is the best, that is, the heat transfer per unit pressure drop of such heat exchanger is the highest and the maximum value of the heat transfer over pressure drop is obtained at K = 2×10−7 m2.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Ritunesh Kumar ◽  
Gurjeet Singh ◽  
Dariusz Mikielewicz

Microchannel heat sink on one hand enjoys benefits of intensified several folds heat transfer performance but on the other hand has to suffer aggravated form of trifling limitations associated with imperfect hydrodynamics and heat transfer behavior. Flow maldistribution is one of such limitation that exaggerates temperature nonuniformity across parallel microchannels leading to increase in maximum base temperature. Recently, variable width channels approach had been proposed by the current authors to mitigate the flow maldistribution in parallel microchannels heat sinks (MCHS), and in the current numerical study, variable height approach is opted for flow maldistribution mitigation. It is found that variable height microchannels heat sinks (VHMCHS) approach mitigates flow maldistribution rapidly in comparison to variable width microchannels heat sinks (VWMCHS) approach, almost 50% computational time can be saved by VHMCHS approach. Average fluid–solid interface temperature fluctuation across parallel microchannels reduces 3.3 °C by VHMCHS in comparison to VWMCHS approach. The maximum and average temperatures of the base of the heat sink are further reduced by 5.1 °C and 2.7 °C, respectively, for the VHMCHS. It is found that overall heat transfer performance of the heat sink improves further by 3.8% and 5.1% for the VWMCHS and VHMCHS, respectively. The pressure drop penalty of the VHMCHS is found to be 7.2% higher than VWMCHS.


Author(s):  
Lv Ye ◽  
Zhao Liu ◽  
Chun Gao ◽  
Xing Yang ◽  
Zhenping Feng

This paper numerically investigated the flow and heat transfer characteristics in a rectangular channel with pin-fin arrays. The channel simulates a wide aspect ratio (W/E = 3) internal cooling passage of gas turbine blade. The pin-fin applied in the simulation is a new-proposed geometry which consists of a cylinder body with a fixed ratio of diameter to channel height, D0/E = 1/4, and a rounded tip. Each case corresponds to a specific pin-fin array geometry of detachment spacing C between the pin-tip and endwall. In the rig studied, 18 rows of pin-fins are in staggered arrangement along the streamwise direction. The investigation on pin-fin performance has been made mainly into two aspects. One is the effect of diameter of the rounded tip Dh on heat transfer performance and pressure loss in the system, while the other is the effect of detachment C. All the cases have been performed with the range of the Reynolds numbers from 15,000 to 25,000. The SST k–w turbulence model is employed for all the computational analysis. Results reveal that the presence of rounded-tip pin-fin with a detachment effectively promotes the wall-flow interactions and enhances heat transfer on endwalls. The rounded tip diameter has a slight effect on heat transfer and pressure drop in the channel. In the study range, relatively higher detachment promotes higher heat transfer coefficient. In general, the new-proposed pin-fin geometry induces greater heat transfer enhancement and yields relatively lower pressure drop.


2020 ◽  
Vol 1473 ◽  
pp. 012014
Author(s):  
S Bharath ◽  
R Rakesh ◽  
Babu Rao Ponangi ◽  
M Ananthu ◽  
Ashwin Raj ◽  
...  

Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


Sign in / Sign up

Export Citation Format

Share Document