Numerical Study on Forced Convective Heat Transfer in Porous Pin Fin Channels

Author(s):  
Jian Yang ◽  
Min Zeng ◽  
Qiuwang Wang

Pin fin heat exchanges are often used in cooling of high thermal loaded electronic components due to their excellent heat transfer performance. However, the pressure drop in such heat exchanges is usually much higher than that in others, so their overall heat transfer performance is seriously reduced. In order to reduce the pressure drop and improve the overall heat transfer performance for pin fin heat exchangers, porous metal pin arrays are used and the performance of fluid flow and heat transfer in heat exchanger unit cells are numerically studied. The Forchheimer-Brinkman extended Darcy model and two-equation heat transfer model for porous media are employed and the effects of Reynolds number (Re), permeability (K) and pin fin cross-section forms are studied in detail. The results show that, with proper selection of governing parameters, the overall heat transfer performance of porous pin fin heat exchanger is much better than that of traditional solid pin fin heat exchanger; the overall heat transfer performance of long elliptic porous pin fin heat exchanger is the best, that is, the heat transfer per unit pressure drop of such heat exchanger is the highest and the maximum value of the heat transfer over pressure drop is obtained at K = 2×10−7 m2.

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 548 ◽  
Author(s):  
Zhongchao Zhao ◽  
Yimeng Zhou ◽  
Xiaolong Ma ◽  
Xudong Chen ◽  
Shilin Li ◽  
...  

In this paper, we study a promising plate-type heat exchanger, the printed circuit heat exchanger (PCHE), which has high compactness and is suitable for high-pressure conditions as a vaporizer during vaporization. The thermal hydraulic performance of supercritical produce liquefied natural gas (LNG) in the zigzag channel of PCHE is numerically investigated using the SST κ-ω turbulence model. The thermo-physical properties of supercritical LNG from 6.5 MPa to 10MPa were calculated using piecewise-polynomial approximations of the temperature. The effect of the channel bend angle, mass flux and inlet pressure on local convection heat transfer coefficient, and pressure drop are discussed. The heat transfer and pressure loss performance are evaluated using the Nusselt and Euler numbers. Nu/Eu is proposed to evaluate the comprehensive heat transfer performance of PCHE by considering the heat transfer and pressure drop characteristics to find better bend angle and operating conditions. The supercritical LNG has a better heat transfer performance when bend angle is less than 15° with the mass flux ranging from 207.2 kg/(m2·s) to 621.6 kg/(m2·s), which improves at bend angle of 10° and lower compared to 15° at mass flux above 414.4 kg/(m2·s). The heat transfer performance is better at larger mass flux and lower operating pressures.


Author(s):  
Lv Ye ◽  
Zhao Liu ◽  
Chun Gao ◽  
Xing Yang ◽  
Zhenping Feng

This paper numerically investigated the flow and heat transfer characteristics in a rectangular channel with pin-fin arrays. The channel simulates a wide aspect ratio (W/E = 3) internal cooling passage of gas turbine blade. The pin-fin applied in the simulation is a new-proposed geometry which consists of a cylinder body with a fixed ratio of diameter to channel height, D0/E = 1/4, and a rounded tip. Each case corresponds to a specific pin-fin array geometry of detachment spacing C between the pin-tip and endwall. In the rig studied, 18 rows of pin-fins are in staggered arrangement along the streamwise direction. The investigation on pin-fin performance has been made mainly into two aspects. One is the effect of diameter of the rounded tip Dh on heat transfer performance and pressure loss in the system, while the other is the effect of detachment C. All the cases have been performed with the range of the Reynolds numbers from 15,000 to 25,000. The SST k–w turbulence model is employed for all the computational analysis. Results reveal that the presence of rounded-tip pin-fin with a detachment effectively promotes the wall-flow interactions and enhances heat transfer on endwalls. The rounded tip diameter has a slight effect on heat transfer and pressure drop in the channel. In the study range, relatively higher detachment promotes higher heat transfer coefficient. In general, the new-proposed pin-fin geometry induces greater heat transfer enhancement and yields relatively lower pressure drop.


2013 ◽  
Vol 832 ◽  
pp. 160-165 ◽  
Author(s):  
Mohammad Alam Khairul ◽  
Rahman Saidur ◽  
Altab Hossain ◽  
Mohammad Abdul Alim ◽  
Islam Mohammed Mahbubul

Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.


Author(s):  
X. Yu ◽  
C. Woodcock ◽  
Y. Wang ◽  
J. Plawsky ◽  
Y. Peles

In this paper we reported an advanced structure, the Piranha Pin Fin (PPF), for microchannel flow boiling. Fluid flow and heat transfer performance were evaluated in detail with HFE7000 as working fluid. Surface temperature, pressure drop, heat transfer coefficient and critical heat flux (CHF) were experimentally obtained and discussed. Furthermore, microchannels with different PPF geometrical configurations were investigated. At the same time, tests for different flow conditions were conducted and analyzed. It turned out that microchannel with PPF can realize high-heat flux dissipation with reasonable pressure drop. Both flow conditions and PPF configuration played important roles for both fluid flow and heat transfer performance. This study provided useful reference for further PPF design in microchannel for flow boiling.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Yu Rao ◽  
Yamin Xu ◽  
Chaoyi Wan

A numerical study was conducted to investigate the effects of dimple depth on the flow and heat transfer characteristics in a pin fin-dimple channel, where dimples are located spanwisely between the pin fins. The study aimed at promoting the understanding of the underlying convective heat transfer mechanisms in the pin fin-dimple channels and improving the cooling design for the gas turbine components. The flow structure, friction factor, and heat transfer performance of the pin fin-dimple channels with various dimple depths have been obtained and compared with each other for the Reynolds number range of 8200–80,800. The study showed that, compared to the pin fin channel, the pin fin-dimple channels have further improved convective heat transfer performance, and the pin fin-dimple channel with deeper dimples shows relatively higher Nusselt number values. The study still showed a dimple depth-dependent flow friction performance for the pin fin-dimple channels compared to the pin fin channel, and the pin fin-dimple channel with shallower dimples shows relatively lower friction factors over the studied Reynolds number range. Furthermore, the computations showed the detailed characteristics in the distribution of the velocity and turbulence level in the flow, which revealed the underlying mechanisms for the heat transfer enhancement and flow friction reduction phenomenon in the pin fin-dimple channels.


2018 ◽  
Vol 227 ◽  
pp. 719-730 ◽  
Author(s):  
Jingyu Wang ◽  
Jian Yang ◽  
Zhilong Cheng ◽  
Yan Liu ◽  
Yitung Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document