Experimental investigation on the enhanced cooling performance of a new crushed-rock revetment embankment in warm permafrost regions

2017 ◽  
Vol 120 ◽  
pp. 121-129 ◽  
Author(s):  
Minghao Liu ◽  
Fujun Niu ◽  
Wei Ma ◽  
Jianhong Fang ◽  
Zhanju Lin ◽  
...  
Energy ◽  
2015 ◽  
Vol 93 ◽  
pp. 874-881 ◽  
Author(s):  
Mingyi Zhang ◽  
Xiyin Zhang ◽  
Shuangyang Li ◽  
Daoyong Wu ◽  
Wansheng Pei ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minghao Liu ◽  
Jing Luo ◽  
Liang Zhang ◽  
Xin Ju

A crushed-rock revetment (CRR) with high permeability that can be paved on embankment slopes is widely used to cool and protect the subgrade permafrost. In this study, a traditional CRR over warm permafrost was selected to investigate its cooling characteristics based on the ground temperature observed from 2003 to 2014. A new mitigation structure (NMS) was designed to improve the cooling capacity of the CRR and to counter the pore-filling of the rock layer. Numerical simulations were conducted to evaluate the cooling performance and reinforcing capacity of the NMS based on a developed heat and mass transfer model. The results indicate that the traditional CRR can improve the symmetry of the permafrost subgrade and decrease the ground temperature of shallow permafrost. However, the CRR cannot generate strong enough cooling to influence the deep (below 10 m depth) and warm permafrost with a mean annual ground temperature above −1.0°C. The wind-blown sand can further weaken the cooling of the CRR and cause significant permafrost warming and thawing beneath the slopes, posing a severe threat to the long-term safe operation of the embankment. The proposed NMS can produce a significantly superior cooling performance to the CRR. If the CRR is reinforced by the new structure, it can not only effectively cool the underlying warm permafrost but also elevate the permafrost table. The new structure can also protect the rock layer on the slopes from sand-filling. The NMS can be used as an effective method for roadbed design or maintenance over warm permafrost.


Author(s):  
M. Ghorab ◽  
I. Hassan ◽  
T. Lucas

This paper presents an experimental investigation of the film cooling performance of a New Hybrid Film Cooling Scheme using Thermochromic Liquid Crystal technique. The new scheme has been designed to improve the film cooling performance of gas turbine airfoils. The scheme includes two consecutive film hole configurations with interior bending. The cooling performance of the new scheme was analyzed across blowing ratios of 0.5, 1.0 and 1.5, at a density ratio of 0.94. The results showed that the new scheme enhanced the local and the laterally averaged film cooling performance in terms of effectiveness, and net heat flux reduction in compared to other film hole configurations. The bending effect of the new scheme throttled the secondary flow causing it to spread widely over the downstream surfaces, hence enhancing the film cooling performance at low and high blowing ratios. The hybrid scheme provided an average heat transfer ratio near unity over the downstream surfaces at low and high blowing ratios.


Sign in / Sign up

Export Citation Format

Share Document