Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage

2018 ◽  
Vol 136 ◽  
pp. 268-274 ◽  
Author(s):  
Hanfei Zhang ◽  
Anirudh Balram ◽  
Hani Tiznobaik ◽  
Donghyun Shin ◽  
Sunand Santhanagopalan
2018 ◽  
Vol 5 ◽  
pp. 8 ◽  
Author(s):  
Maria Dolores Romero-Sanchez ◽  
Radu-Robert Piticescu ◽  
Adrian Mihail Motoc ◽  
Francisca Aran-Ais ◽  
Albert Ioan Tudor

NaNO3 has been selected as phase change material (PCM) due to its convenient melting and crystallization temperatures for thermal energy storage (TES) in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation) into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks). As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2) instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C). Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2599
Author(s):  
Wenjin Ding ◽  
Yuan Shi ◽  
Markus Braun ◽  
Fiona Kessel ◽  
Martin Frieß ◽  
...  

Oxide ceramics could be attractive high-temperature construction materials for critical structural parts in high-temperature molten salt thermal energy storage systems due to their excellent corrosion resistance and good mechanical properties. The 3D-printing technology allows the production of ceramic components with highly complex geometries, and therefore extends their applications. In this work, 3D-printed ZrO2 and Al2O3 ceramics were immersed in molten MgCl2/KCl/NaCl under argon or exposed in argon without molten chlorides at 700 °C for 600 h. Their material properties and microstructure were investigated through three-point-bend (3PB) testing and material analysis with SEM-EDX and XRD. The results show that the 3D-printed Al2O3 maintained its mechanical property after exposure in the strongly corrosive molten chloride salt. The 3D-printed ZrO2 had an enhanced 3PB strength after molten salt exposure, whereas no change was observed after exposure in argon at 700 °C. The material analysis shows that some of the ZrO2 on the sample surface changed its crystal structure and shape (T→M phase transformation) after molten salt exposure, which could be the reason for the enhanced 3PB strength. The thermodynamic calculation shows that the T→M transformation could be caused by the reaction of the Y2O3-stabilized ZrO2 with MgCl2 (mainly Y2O3 and ZrO2 with gaseous MgCl2). In conclusion, the 3D-printed ZrO2 and Al2O3 ceramics have excellent compatibility with corrosive molten chlorides at high temperatures and thus show a sound application potential as construction materials for molten chlorides.


Author(s):  
Gani B. Ganapathi ◽  
Daniel Berisford ◽  
Benjamin Furst ◽  
David Bame ◽  
Michael Pauken ◽  
...  

An alternate to the two-tank molten salt thermal energy storage system using supercritical fluids is presented. This technology can enhance the production of electrical power generation and high temperature technologies for commercial use by lowering the cost of energy storage in comparison to current state-of-the-art molten salt energy storage systems. The volumetric energy density of a single-tank supercritical fluid energy storage system is significantly higher than a two-tank molten salt energy storage system due to the high compressibilities in the supercritical state. As a result, the single-tank energy storage system design can lead to almost a factor of ten decrease in fluid costs. This paper presents results from a test performed on a 5 kWht storage tank with a naphthalene energy storage fluid as part of a small preliminary demonstration of the concept of supercritical thermal energy storage. Thermal energy is stored within naphthalene filled tubes designed to handle the temperature (500 °C) and pressure (6.9 MPa or 1000 psia) of the supercritical fluid state. The tubes are enclosed within an insulated shell heat exchanger which serves as the thermal energy storage tank. The storage tank is thermally charged by flowing air at >500 °C over the storage tube bank. Discharging the tank can provide energy to a Rankine cycle (or any other thermodynamic process) over a temperature range from 480 °C to 290 °C. Tests were performed over three stages, starting with a low temperature (200 °C) shake-out test and progressing to a high temperature single cycle test cycling between room temperature and 480 °C and concluding a two-cycle test cycling between 290 °C and 480 °C. The test results indicate a successful demonstration of high energy storage using supercritical fluids.


2021 ◽  
Vol 413 ◽  
pp. 125407
Author(s):  
Argyrios Anagnostopoulos ◽  
Maria Elena Navarro ◽  
Maria Stefanidou ◽  
Yulong Ding ◽  
Georgios Gaidajis

Sign in / Sign up

Export Citation Format

Share Document