Knocking behavior and emission characteristics of a port fuel injected hydrogen enriched compressed natural gas fueled spark ignition engine

2018 ◽  
Vol 141 ◽  
pp. 42-50 ◽  
Author(s):  
S.M.V. Sagar ◽  
Avinash Kumar Agarwal
Author(s):  
Jiří Vávra ◽  
Zbyněk Syrovátka ◽  
Michal Takáts ◽  
Eduardo Barrientos

This work presents an experimental investigation of advanced combustion of extremely lean natural gas / air mixture in a gas fueled automotive engine with a scavenged pre-chamber. The pre-chamber, which was designed and manufactured in-house, is scavenged with natural gas and is installed into a modified cylinder head of a gas fueled engine for a light duty truck. For initial pre-chamber ignition tests and optimizations, the engine is modified into a single cylinder one. The pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure transducer. This arrangement allows a simultaneous crank angle resolved pressure measurement in the pre-chamber and in the main combustion chamber and provides important validation data for computational fluid dynamics (CFD) simulations. The results of the tests and initial optimizations show that the pre-chamber engine is able to operate within a significantly wider range of mixture composition than the conventional spark ignition engine. Full load operation of the pre-chamber engine is feasible with stoichiometric mixture (compatible with a three-way catalyst), without excessive thermal loading of components. At low load operation, the results show low NOx emissions with a high potential to fulfil current and future NOx limits without lean NOx exhaust gas after-treatment. The scavenged pre-chamber helps to increase the combustion rate mainly in the initial phase of combustion. However, significant unburned hydrocarbons emissions due to incomplete combustion need further optimizations. Thermal efficiency of lean operation of the engine with the pre-chamber compared to the conventional spark ignition system operated in stoichiometric conditions shows approximately 13% improvement.


1975 ◽  
Vol 189 (1) ◽  
pp. 139-147 ◽  
Author(s):  
G. A. Karim ◽  
I. A. Ali

For various fuel-air mixtures and different compression ratios, the intake temperature was varied over the entire range of ***200°F (366K) down to − 100°F (200K) when employing a single cylinder spark ignited research engine fuelled with natural gas. Performance data such as knock and ignition limits the nature and extent of exhaust emission and chamber pressure cyclic variation were obtained. Means were then suggested for the interpretation of the above mentioned data in terms of engine operation on liquefied natural gas. The experimental work confirmed in general the attractive features of the use of natural gas as a fuel in a spark ignition engine operated under extremely cold intake temperature conditions and that emissions of pollutants were not significantly increased.


2018 ◽  
Vol 165 ◽  
pp. 440-446 ◽  
Author(s):  
Stanislaw Szwaja ◽  
Ehsan Ansari ◽  
Sandesh Rao ◽  
Magdalena Szwaja ◽  
Karol Grab-Rogalinski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document