Development of Timed Manifold Injection System for Compressed Natural Gas (CNG) Operation of Spark Ignition Engine

1999 ◽  
Author(s):  
H. B. Mathur ◽  
S. L. Soni
2017 ◽  
Vol 20 (K6) ◽  
pp. 79-86
Author(s):  
Quoc Dang Tran

This article shows an investigated research on Compressed Natural Gas (CNG) engine with a port injection when varying ignition timing. The obtained results from simulating study have indicated that both of brake thermal efficiency and torque have a similar trend when varying ignition timing. The effect of ignition timing on the value of brake thermal efficiency is stronger in comparison with torque, however, the increase in engine speed or lambda value have to adjust the ignition timing more early. To reach the maximum break torque at each engine speed, the ignition timing should be adjusted IT = 14 - 32 bTDC, and this is also basic value to design the ignition timing system using CNG engine with port injection.


2012 ◽  
Vol 151 (4) ◽  
pp. 20-33
Author(s):  
Piotr BIELACZYC ◽  
Andrzej SZCZOTKA

Natural gas is one of the most promising alternative fuels to meet the new stringent Euro 6 emissions regulations in the European Union, as well as the planned CO2 emissions reductions. For spark-ignition (SI) engines, bi-fuel fuelling equipment is widely available and engine conversion technology for European automobiles is well established, thereby facilitating usage of CNG in this engine type. This study investigates the implications of natural gas fuelling of a passenger car featuring a spark-ignition engine regarding the possibility of meeting Euro 6 emissions limits for gaseous pollutants. This paper presents an analysis of CO, THC, NMHC, NOx and CO2 emissions during testing of a vehicle on a chassis dynamometer, fuelled with CNG, in the context of the new Euro 6 emissions requirements. The analyses were performed on a Euro 5 bi-fuel vehicles with an SI engine equipped with an MPI feeding system operating in closed-loop control, a typical three-way-catalyst, and a heated oxygen sensor. The vehicles had been adapted by their manufacturer for fuelling with CNG by using additional special equipment mounted onto the existing petrol fuelling system. The vehicles tested featured a multipoint gas injection system latest generation. The tests subject to the analyses presented here were performed in the Engine Research Department of BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biala, Poland, within a research programme investigating the influence of alternative fuels on exhaust emissions from automotive vehicles with spark-ignition and compression-ignition engines.


2021 ◽  
Vol 302 ◽  
pp. 01005
Author(s):  
Tanat Limpachoti ◽  
Kampanart Theinnoi

Compressed biomethane gas (CBG) is an interesting alternative fuel that can be used to solve fossil fuel crisis problems. Nevertheless, it is concerned about engine performance and exhaust gas emission. In additions, CBG can be produced from agricultural harvesting residues and the food industry that is a good opportunity for utilizing biogas as a vehicle fuel. The aims of this research are comparative analysis of the engine performance and exhaust emission on a CBG and compressed natural gas (CNG) fuelled in a spark ignition engine on engine performance and emissions. The engine has been modified to operate with both fuel gases under constant engine load (50% maximum load) and engine speed (1500 - 3500 rpm). The results show that the engine operated with CBG has higher thermal efficiency with lower the nitrogen oxide (NOx) and hydrocarbon (HC) emissions compared with CNG. Thus, the CBG fuel can be used as an alternative fuel to substitute CNG fuel in the spark ignition engine. In additions, the results give the useful information for developed and optimised the engine operated with compression biogas to impact the higher demand of automotive fuels in the future.


2015 ◽  
Vol 68 ◽  
pp. 355-362 ◽  
Author(s):  
Musthafah Mohd. Tahir ◽  
M.S. Ali ◽  
M.A. Salim ◽  
Rosli A. Bakar ◽  
A.M. Fudhail ◽  
...  

2017 ◽  
Vol 18 (1-2) ◽  
pp. 118-130 ◽  
Author(s):  
Francesco Catapano ◽  
Silvana Di Iorio ◽  
Paolo Sementa ◽  
Bianca Maria Vaglieco

Sign in / Sign up

Export Citation Format

Share Document