The effects of geometrical topology on fluid flow and thermal performance in Kagome cored sandwich panels

2018 ◽  
Vol 142 ◽  
pp. 79-88 ◽  
Author(s):  
Beibei Shen ◽  
Hongbin Yan ◽  
Hongqian Xue ◽  
Gongnan Xie
Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1152
Author(s):  
Aidan Reilly ◽  
Richard O'Hegarty ◽  
Oliver Kinnane

This paper presents work developing thin precast concrete sandwich panels for recladding and overcladding applications. These panels are designed for the retrofit of precast concrete structures where the underlying frame is structurally sound. Structural and thermal testing has been carried out to validate the performance of the panels. The panels are designed to have thermal performance better than current national standards, and this has been verified through hot-box testing of components and small-scale panels. Structural performance of the panels has been tested with 3 point bending tests on full-scale panels. Work is in progress towards demonstration of the panels on an occupied building in the UK.


2019 ◽  
Vol 29 (8) ◽  
pp. 2885-2910 ◽  
Author(s):  
Dandan Qiu ◽  
Lei Luo ◽  
Songtao Wang ◽  
Bengt Ake Sunden ◽  
Xinhong Zhang

Purpose This study aims to focus on the surface curvature, jet to target spacing and jet Reynolds number effects on the heat transfer and fluid flow characteristics of a slot jet impinging on a confined concave target surface at constant jet to target spacing. Design/methodology/approach Numerical simulations are used in this research. Jet to target spacing, H/B is varying from 1.0 to 2.2, B is the slot width. The jet Reynolds number, Rej, varies from 8,000 to 40,000, and the surface curvature, R2/B, varies from 4 to 20. Results of the target surface heat transfer, flow parameters and fluid flow in the concave channel are performed. Findings It is found that an obvious backflow occurs near the upper wall. Both the local and averaged Nusselt numbers considered in the defined region respond positively to the Rej. The surface curvature plays a positive role in increasing the averaged Nusselt number for smaller surface curvature (4-15) but affects little as the surface curvature is large enough (> 15). The thermal performance is larger for smaller surface curvature and changes little as the surface curvature is larger than 15. The jet to target spacing shows a negative effect in heat transfer enhancement and thermal performance. Originality/value The surface curvature effects are conducted by verifying the concave surface with constant jet size. The flow characteristics are first obtained for the confined impingement cases. Then confined and unconfined slot jet impingements are compared. An ineffective point for surface curvature effects on heat transfer and thermal performance is obtained.


Author(s):  
Justin Caspar ◽  
Julio Bravo ◽  
Shuoyu Wang ◽  
Ahmed Abdulridha ◽  
Sudhakar Neti ◽  
...  

Abstract The fluid flow and heat transfer inside a concrete thermal energy storage module is simulated for various heat transfer fluid flow rates and inlet temperatures. The storage performance of the module is characterized based on the volume-averaged temperature and normalized energy distribution through the block versus time. In the turbulent flow regime, induced mixing in the pipe strongly enhanced the performance of the module compared to the laminar regime. The block was able to fully charge and discharge in a turbulent flow regime, whereas that behavior was not present in the laminar flow regime. Varying the heat transfer temperature had an effect on the time rate of change of temperature as well as the charge times. As the thermal gradient increased, the initial time rate of temperature in the block increased as well as the charge time. Since the block has higher theoretical energy at a larger gradient, power over a longer duration is necessary to reach a saturation point. By characterizing the thermal performance of the module, the effect of material properties and operational parameters can be studied in order to design a module that can meet the needs of a power generation plant.


Sign in / Sign up

Export Citation Format

Share Document