Analysis of heat transfer and fluid flow of a slot jet impinging on a confined concave surface with various curvature and small jet to target spacing

2019 ◽  
Vol 29 (8) ◽  
pp. 2885-2910 ◽  
Author(s):  
Dandan Qiu ◽  
Lei Luo ◽  
Songtao Wang ◽  
Bengt Ake Sunden ◽  
Xinhong Zhang

Purpose This study aims to focus on the surface curvature, jet to target spacing and jet Reynolds number effects on the heat transfer and fluid flow characteristics of a slot jet impinging on a confined concave target surface at constant jet to target spacing. Design/methodology/approach Numerical simulations are used in this research. Jet to target spacing, H/B is varying from 1.0 to 2.2, B is the slot width. The jet Reynolds number, Rej, varies from 8,000 to 40,000, and the surface curvature, R2/B, varies from 4 to 20. Results of the target surface heat transfer, flow parameters and fluid flow in the concave channel are performed. Findings It is found that an obvious backflow occurs near the upper wall. Both the local and averaged Nusselt numbers considered in the defined region respond positively to the Rej. The surface curvature plays a positive role in increasing the averaged Nusselt number for smaller surface curvature (4-15) but affects little as the surface curvature is large enough (> 15). The thermal performance is larger for smaller surface curvature and changes little as the surface curvature is larger than 15. The jet to target spacing shows a negative effect in heat transfer enhancement and thermal performance. Originality/value The surface curvature effects are conducted by verifying the concave surface with constant jet size. The flow characteristics are first obtained for the confined impingement cases. Then confined and unconfined slot jet impingements are compared. An ineffective point for surface curvature effects on heat transfer and thermal performance is obtained.

Author(s):  
Shian Li ◽  
Gongnan Xie ◽  
Bengt Sunden

Purpose – The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce the pressure drop while keeping a significant heat transfer enhancement. The purpose of this paper is to perform computer-aided simulations of turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls. Design/methodology/approach – Computational fluid dynamics technique is used to study the fluid flow and heat transfer characteristics in a three-dimensional rectangular passage with continuous and truncated V-shaped ribs. Findings – The inlet Reynolds number, based on the hydraulic diameter, is ranged from 12,000 to 60,000 and a low-Re k-e model is selected for the turbulent computations. The local flow structure and heat transfer in the internal cooling passages are presented and the thermal performances of the ribbed passages are compared. It is found that the passage with truncated V-shaped ribs on opposite walls provides nearly equivalent heat transfer enhancement with a lower (about 17 percent at high Reynolds number of 60,000) pressure loss compared to a passage with continuous V-shaped ribs or continuous transversal ribs. Research limitations/implications – The fluid is incompressible with constant thermophysical properties and the flow is steady. The passage is stationary. Practical implications – New and additional data will be helpful in the design of ribbed passages to achieve a good thermal performance. Originality/value – The results imply that truncated V-shaped ribs are very effective in improving the thermal performance and thus are suggested to be applied in gas turbine blade internal cooling, especially at high velocity or Reynolds number.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dandan Qiu ◽  
Lei Luo ◽  
Zhiqi Zhao ◽  
Songtao Wang ◽  
Zhongqi Wang ◽  
...  

Purpose The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel. Design/methodology/approach Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics. Findings It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study. Originality/value The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.


2005 ◽  
Author(s):  
L. K. Liu ◽  
C. J. Fang ◽  
M. C. Wu ◽  
C. Y. Lee ◽  
Y. H. Hung

A series of experimental investigations with a stringent measurement method on the fluid flow characteristics of slot jet without or with a target surface have been successfully conducted. From all the fluid velocity data measured in the present study, the experimental conditions have been verified to be spanwise-symmetrically maintained and the results have been achieved in a spanwise-symmetric form. Three types of jet configuration without or with target surface are investigated: (A) Confined Slot Jet without Target Surfaces – the fluid flow parameters studied in the present investigation is the jet Reynolds number (ReD). Its ranges are ReD=506-1517. (B) Confined Slot Jet with Smooth Surfaces – the fluid flow parameters studied in the present investigation include the ratio of jet separation distance (H) to nozzle width (W) and the jet Reynolds number (ReD). The ranges of the relevant parameters are H/W=2–10 and ReD=504–1526. (C) Confined Slot Jet with Extended Surfaces – the fluid flow parameters studied include the ratio of jet separation distance (H) to nozzle width (W), the Reynolds number (ReD) and the ratio of extended surface height (Hes) to nozzle width (W). Their ranges are H/W=3–10, Hes/W=0.74-3.40 and ReD=501–1547. The flow characteristics such as the local mean streamwise velocity distribution, mean streamwise velocity decay along jet centerline, local jet turbulence intensity distribution, and turbulence intensities along jet centerline have been presented and discussed in the study.


2015 ◽  
Vol 25 (8) ◽  
pp. 1978-1999 ◽  
Author(s):  
Kailash Mohapatra ◽  
Dipti Prasad Mishra

Purpose – The purpose of this paper is to determine the heat transfer and fluid flow characteristics of an internally finned tube for different flow conditions. Design/methodology/approach – Numerical investigation have been performed by solving the conservation equations of mass, momentum, energy with two equation-based k-eps model to determine the wall temperature, outlet temperature and Nusselt number of an internally finned tube. Findings – It has been found from the numerically investigation that there exists an optimum fin height and fin number for maximum heat transfer. It was also found that the heat transfer in T-shaped fin was highest compared to other shape. The saw type fins had a higher heat transfer rate compared to the plane rectangular fins having same surface area and the heat transfer rate was increasing with teeth number. Keeping the surface area constant, the shape of the duct was changed from cylindrical to other shape and it was found that the heat transfer was highest for frustum shape compared to other shape. Practical implications – The present computations could be used to predict the heat transfer and fluid flow characteristics of an internal finned tube specifically used in chemical and power plants. Originality/value – The original contribution of the paper was in the use of the two equation-based k-eps turbulent model to predict the maximum heat transfer through optimum design of fins and duct.


Author(s):  
Satyendra Singh ◽  
◽  
Tarun Joshi ◽  
Himanshi Kharkwal ◽  
◽  
...  

The heat transfer and fluid flow characteristics in a tube heat exchanger using H-shape inserts with circular ring (CRWHS) has been done by computationally and experimentally. In this investigation parameters like ratio of the diameters and pitches are considered. The value of diameter and pitch ratios are (DR=0.8, 0.9), (PR=3, 4) respectively. The main section in which investigation was done is 1.5m long and the hydraulic diameter of the tube is 68.1mm. 1000 W/m2 heat flux was provided in the main section. Heat flux was constant throughout the investigation. Air is used as a working medium in which 6000 to 21000 Reynolds number was used for the investigation. The observation revealed that the increment in heat transfer rate is 4.56 times as compare to smooth tube for the circular ring with H-shape inserts. In case of DR=0.8 and PR=3, maximum thermal performance factor was obtain which is 3.24. In GIT the deviation in Nusselt number & friction factor is limited to ±0.4% & ±0.1% respectively. CFD analysis result comparisons with experimental one are presented in which the maximum deviations for thermal performance factor are limited to ±3.6%.


10.30544/242 ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 83-97
Author(s):  
Yacine Khelili ◽  
Abderrazak Allali ◽  
Rafik Bouakkaz

Numerical investigation of heat transfer phenomena of low Reynolds number nano-fluid flow over an isothermal cylinder is presented in this paper. Steady state governing equations (continuity, N–S and energy equations) have been solved using finite volume method. Stationary heat transfer, and flow characteristics over the cylinder have been studied for water based copper nanofluid with different solid fraction values. The effect of volume fraction of nano- particles on the fluid flow and heat transfer were investigated numerically. It was found that at a given Nusselt number, drag coefficient, re-circulation length, and pressure coefficient increase by increasing the volume fraction of nano-particles.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Junfei Zhou ◽  
Xinjun Wang ◽  
Jun Li ◽  
Weitao Hou

In order to further study the effects of the target channel shape on the cooling performance of the double swirl cooling (DSC), five double swirl channels formed by two overlapping elliptic cylinders with different length ratio between the vertical semi-axis and the horizontal semi-axis are applied. Numerical studies are carried out under three Reynolds numbers. The flow characteristics and heat transfer performance of five DSC cases are compared with the benchmark impingement cooling case. The flow losses, cross-flow development, generated vortices, and velocity distributions inside target channels are illustrated, analyzed, and compared. The spanwise averaged Nusselt number, Nusselt number distributions, and thermal performance are discussed and compared. Results indicate that the largest length ratio between the vertical semi-axis and the horizontal semi-axis of the target channel yields the lowest flow loss, largest overall averaged Nusselt number, and best thermal performance. With the decrease in the length ratio, the heat transfer distribution on the target surface becomes more uniform. The maximum enhancement of overall averaged Nusselt number and thermal performance in DSC is about 30% and 33%, respectively.


Sign in / Sign up

Export Citation Format

Share Document