Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII)

2018 ◽  
Vol 143 ◽  
pp. 493-506 ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Ali Akbar Abbasian Arani ◽  
Saeed Esfandeh
Author(s):  
Glenn Kwabena Gyimah ◽  
Zhongning Guo ◽  
Ping Huang ◽  
Shuzhen Jiang ◽  
Gary C. Barber

Lubricant film-forming viscosity index improvers blended with commercial engine oil have been developed and studied by using optical interferometry. The influence of the viscosity index improvers (PTFE and MoS2) mixed with oil were experimentally studied and compared with engine oil without the index improvers as the baseline. The effect of the viscosity index improvers on lubricant film thickness, contact pressure and rolling speed for the case of a steel ball loaded on a flat glass surface in point contact condition was investigated. An optical interferometry technique which utilized a monochromatic two-beam interferometry light source, a microscope and a high-speed video recording device was used for the investigation. Hamrock and Dawson calculations for EHL film thickness were also used for comparative analysis. The lubricants used were commercial SAE #30 engine oil and PTFE and MoS2 mixed with commercial SAE #30 engine oil. The oil viscosities ranged from 0.0109 Pa.s to 0.255 Pa.s. The rolling speed and the loads were varied between 0.189 m/s to 0.641 m/s and 1 N to 2.6 N respectively. The lubricant film thickness stability at the point of contact between the steel ball and the glass disc was investigated for both steady and rolling state conditions. The viscosity index improvers were found to have a significant effect on the film thickness behavior under pure rolling point contact conditions.


2015 ◽  
Vol 67 (5) ◽  
pp. 425-433 ◽  
Author(s):  
Nehal S. Ahmed ◽  
Amal M. Nassar ◽  
Rabab M. Nasser

Purpose – The purpose of this paper is to prepare novel types of copolymers and terpolymers depending on jojoba, and using them as additives for lubricating oil. Design/methodology/approach – Copolymerization of 1 mole of jojoba with 2 moles of vinyl acetate and copolymerization of 1 mole of jojoba with 2 moles of vinyl pyrrolidone were carried out. Then, two series of terpolymers were prepared by reacting (jojoba: vinyl acetate: alkylacrylate) and (jojoba: vinyl pyrrolidone: alkylacrylate), using free radical chain addition polymerization. Elucidation of the prepared polymers was carried out by using Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and gel permeation chromatography, for determination of weight average molecular weight. The thermal stability of the prepared polymers was determined. The prepared polymers were evaluated as viscosity index improvers and pour point depressants for lubricating oil. Findings – It was found that the viscosity index increases with increasing the alkyl chain length of alkylacrylate. The effect of the monomer type was studied, and it was found that the polymers depending on vinyl acetate have great effect as viscosity index improvers and pour point depressants for lubricating oil. Originality/value – The polymerization of jojoba as different copolymers and terpolymers was carried out. The great influence of the prepared additives on modification of the viscosity properties and pour point of the oil was observed.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 661
Author(s):  
Alexandros T. Zachiotis ◽  
Evangelos G. Giakoumis

A Monte Carlo simulation methodology is suggested in order to assess the impact of ambient wind on a vehicle’s performance and emissions. A large number of random wind profiles is generated by implementing the Weibull and uniform statistical distributions for wind speed and direction, respectively. Wind speed data are drawn from eight cities across Europe. The vehicle considered is a diesel-powered, turbocharged, light-commercial vehicle and the baseline trip is the worldwide harmonized light-duty vehicles WLTC cycle. A detailed engine-mapping approach is used as the basis for the results, complemented with experimentally derived correction coefficients to account for engine transients. The properties of interest are (engine-out) NO and soot emissions, as well as fuel and energy consumption and CO2 emissions. Results from this study show that there is an aggregate increase in all properties, vis-à-vis the reference case (i.e., zero wind), if ambient wind is to be accounted for in road load calculation. Mean wind speeds for the different sites examined range from 14.6 km/h to 24.2 km/h. The average increase in the properties studied, across all sites, ranges from 0.22% up to 2.52% depending on the trip and the property (CO2, soot, NO, energy consumption) examined. Based on individual trip assessment, it was found that especially at high vehicle speeds where wind drag becomes the major road load force, CO2 emissions may increase by 28%, NO emissions by 22%, and soot emissions by 13% in the presence of strong headwinds. Moreover, it is demonstrated that the adverse effect of headwinds far exceeds the positive effect of tailwinds, thus explaining the overall increase in fuel/energy consumption as well as emissions, while also highlighting the shortcomings of the current certification procedure, which neglects ambient wind effects.


2021 ◽  
Vol 783 ◽  
pp. 147101
Author(s):  
Yanzhao Hao ◽  
Shunxi Deng ◽  
Zhaowen Qiu ◽  
Zhenzhen Lu ◽  
Hui Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document