Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators

2019 ◽  
Vol 154 ◽  
pp. 1-8 ◽  
Author(s):  
Arda Yapicioglu ◽  
Ibrahim Dincer
2016 ◽  
Vol 78 (6) ◽  
Author(s):  
Alireza Shirneshan ◽  
Amin Nedayali

The growing demand of diesel power generators in Iran has led to air pollution. Hence, it is necessary to ascertain the level of performance and emissions of the diesel power generators fueled with biofuels. For the first time, in this study, the effect of biodiesel from waste cooking oil and diesel fuel blends (B0, B20, B50, B80 and B100) on the performance (brake power, brake torque, BSFC, brake thermal efficiency and exhaust gas temperature) and emission characteristics (CO and NOx) of a diesel power generator model CAT3412 was investigated. The experiments were conducted at rated engine speed 1530 rpm and various engine loads (25%, 50%, 75% and 100%). The results of the study showed an increase in brake power, brake torque, BTE and NOx emission and a reduction trend in BSFC and CO emission at higher engine loads for all the biodiesel-diesel blends. In addition, the research results indicated that B20 and B50 fuel blends in terms of performance emission characteristics could be recognized as the potential candidates to be certificated for usage in the diesel power generator.


Fuel ◽  
2015 ◽  
Vol 158 ◽  
pp. 835-842 ◽  
Author(s):  
Ch. Keramiotis ◽  
M. Katoufa ◽  
G. Vourliotakis ◽  
A. Hatziapostolou ◽  
M.A. Founti

Energy ◽  
2019 ◽  
Vol 168 ◽  
pp. 136-150 ◽  
Author(s):  
Ashish Nayyar ◽  
Dilip Sharma ◽  
Shyam Lal Soni ◽  
Bhuvnesh Bhardwaj ◽  
Manu Augustine

Author(s):  
Shailendra Sinha ◽  
Avinash Kumar Agarwal

Over the past several years, there has been increased interest in alternative diesel fuels to control emissions and provide energy security. Biodiesel is a fuel that can be made from renewable biological sources such as vegetable oils and animal fats, has been recognized as an environment friendly alternative to mineral diesel. In present investigation, rice bran oil (non-edible) was transesterified to methyl ester and reaction conditions for transesterifcation process for rice bran oil were optimized. Various properties like viscosity, density, flash point, calorific value of the biodiesel thus prepared are characterized as per ASTM norms (ASTM D6751) and found comparable to diesel. Steady state engine dynamometer test at full throttle conditions have been carried out to evaluate the performance and emission characteristics of a medium duty transportation DI diesel engine. Engine was fuelled with various blends of rice-bran oil biodiesel (ROME) and mineral diesel ranging from 5% biodiesel to 100% biodiesel (5, 10, 20, 30, 50, and 100%). Performance and emission data were compared to the baseline data obtained using mineral diesel. Same engine without any hardware modification has been adopted for tests on all fuel blends. The results of this experimental investigation showed that biodiesel and biodiesel blends exhibited almost similar torque and power characteristics. Biodiesel blends up to 20% produced slightly higher torque and improved performance. Improvement in fuel conversion efficiency was found for lower concentration blends i.e. up to 20%. Lowest efficiency was found for 100% biodiesel blend. All the biodiesel blends emitted lower total hydrocarbon, carbon monoxide emissions and smoke opacity but slightly higher NOx emissions during the full throttle tests. Emission tests with all the fuel blends have also been carried out using European 13 MODE test (ECE R49) procedure. Drastic reduction in THC and CO and slight increase in NOx was observed.


Sign in / Sign up

Export Citation Format

Share Document