scholarly journals Evaporation and atomization characteristics of dual-fuel system under flash boiling conditions

2019 ◽  
Vol 161 ◽  
pp. 114161 ◽  
Author(s):  
Yi Gao ◽  
Shengqi Wu ◽  
Xue Dong ◽  
Xuesong Li ◽  
Min Xu
Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881407
Author(s):  
Yasin Karagöz ◽  
Majid Mohammad Sadeghi

In this study, it was aimed to operate today’s compression ignition engines easily in dual-fuel mode with a developed electronic control unit. Especially, diesel engines with mechanical fuel system can be easily converted to common-rail fuel system with a developed electronic control unit. Also, with this developed electronic control unit, old technology compression ignition engines can be turned into dual-fuel mode easily. Thus, thanks to the flexibility of engine maps to be loaded into the electronic control unit, diesel engines can conveniently be operated with alternative gas fuels and diesel dual fuel. In particular, hydrogen, an alternative, environmentally friendly, and clean gas fuel, can easily be used with diesel engines by pilot spraying. Software and hardware development of electronic control unit are made, in order to operate a diesel engine with diesel+hydrogen dual fuel. Finally, developed electronic control unit was reviewed on 1500 r/min stable engine speed on different hydrogen energy rates (0%, 15%, 30%, and 45% hydrogen) according to thermic efficiency and emissions (CO, total unburned hydrocarbons, NOx, and smoke), and apart from NOx emissions, a significant improvement has been obtained. There was no increased NOx emission on 15% hydrogen working condition; however, on 45% hydrogen working condition, a dramatic increase arose.


Author(s):  
Agoes Santoso ◽  
Beny Cahyono ◽  
Edi Jadmiko ◽  
Tony Bambang Musriyadi ◽  
Kevin Garsia

Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
I Gede Kusuma Putra ◽  
I Gusti Bagus Wijaya Kusuma ◽  
I Made Dwi Budiana Penindra

Penelitian kinerja PLTD dual-fuel berbahan bakar solar dan gas hasil gasifikasi bambu di PT. Indonesia Power UBP Bali ini bertujuan untuk mengetahui kemampuan bambu agar mampu mengurangi penggunaan bahan bakar solar yang kini ketersediaannya semakin menispis dengan menggunakan sistem dual-fuel pada pembangkit listrik tenaga diesel. Pengukuran dilakukan dengan mengukur laju alir udara pembakaran dengan bukaan 0%, 50% dan 100%, laju alir gas produser (syngas), konsumsi bahan bakar spesifik, dan daya genset, serta rasio beban listrik yang diberikan 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% dengan kapasitas genset 40 kW. Data yang didapatkan menunjukkan daya yang dihasilkan dari mode dual-fuel lebih besar yaitu 36,6 kW, dan konsumsi bahan bakar yang lebih sedikit yaitu 6,55 L/jam dengan 100% bukaan valve udara pembakaran.Substitusi penggunaan bahan bakar syngas terhadap bahan bakar solar mampu mengurangi total penggunaan bahan bakar solar sebesar 47,3%. Research on the performance of dual-fuel diesel power plant with diesel fuel and bamboo gasification gas in PT. Indonesia Power UBP Bali aims to determine the ability of bamboo to be able to reduce the use of diesel fuel which is now the availability is running low, by using a dual-fuel system in a diesel power plant. Measurements were made by measuring the combustion air flow with openings of 0%, 50% and 100%, producer gas flow rate (syngas), specific fuel consumption, and generator power, and the ratio of electrical loads given 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, with a generator capacity of 40 kW. The data obtained shows that the power produced from the dual-fuel mode is greater at 36.6 kW, and less fuel consumption of 6.55 L/h with 100% combustion air valve openings.The substitution for the use of syngas fuel for diesel fuel is able to reduce the total use of diesel fuel by 47.3%.


2016 ◽  
Vol 22 (9) ◽  
pp. 2128-2132 ◽  
Author(s):  
Fathul Hakim Zulkifli ◽  
Muammar Mukhsin Ismail ◽  
Mas Fawzi ◽  
Shahrul Azmir Osman

2015 ◽  
Vol 773-774 ◽  
pp. 550-554 ◽  
Author(s):  
Fathul Hakim Zulkifli ◽  
Mas Fawzi ◽  
Shahrul Azmir Osman

The compressed natural gas (CNG) – diesel dual fuel engine is discussed through their basic operation and its characteristic. The main problem of running a diesel engine on dual fuel mode with CNG as main fuel is addressed. A brief review of knock phenomena which is widely associated with a dual fuel engine is also covered. Methods to suppress onset knock were suggested.


2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


Author(s):  
A. W. Newman ◽  
P. S. Nixon ◽  
R. I. Wilms ◽  
D. M. Taylor ◽  
M. D. Cornwell

The tri-fuel injector is an extension of the standard dual fuel multi passage injector to cover additional fuels such as Liquid Petroleum Gas (LPG) and Naphtha at medium pumping pressure (less than 40 Bara). There is an additional passage designed for metering the LPG or Naphtha in liquid phase. The fuel system uses a non-contacting rotary pump with modern inverter technology for the pumping of these fuels. Both tri-fuel injector and fuel system are now in commercial operation on two Tornado engines using LPG, natural gas and diesel fuels. The LPG system is operating just below 30 Bara pumping pressure, and has accumulated about 1029 operating hours on the lead engine. LPG load shedding capability has been proven on one engine. Commercial operation of the Typhoon engine on Naphtha at medium pumping pressures (< 40 Bara), with an improved tri-fuel injector, will commence in the near future.


Sign in / Sign up

Export Citation Format

Share Document