Optimization design of grooved evaporator wick structures in vapor chamber heat spreaders

2020 ◽  
Vol 166 ◽  
pp. 114657 ◽  
Author(s):  
Baotong Li ◽  
Xinxin Yin ◽  
Wenhao Tang ◽  
Jinhua Zhang
2022 ◽  
Vol 253 ◽  
pp. 115138
Author(s):  
George Damoulakis ◽  
Constantine M. Megaridis

2019 ◽  
Vol 6 (5) ◽  
pp. 01-18
Author(s):  
Ma Yue ◽  
Shirazy Mahmoud ◽  
Coudrain Perceval ◽  
Colonna Jean-Phulippe ◽  
Souifi Abdelkader ◽  
...  

The interest in silicon vapor chambers (SVCs) has increased in the recent years as they have been identified as efficient cooling systems for microelectronics. They present the advantage of higher thermal conductivity and smaller form factor compared to conventional heat spreaders. This work aims to investigate the potential miniaturization of these devices, preliminary to integration on the backside of mobile device chips, located as close as possible to hotspots. While detailed numerical models of vapor chamber operation are developed, an easy modeling with low computational cost is needed for an effective parametric study.  Based on the study of the operating limits, this paper shows the thinning potential of a water filled micropillar for a device operating below 10 W and identify the corresponding vapour core height, and wick thickness.


2019 ◽  
Vol 7 (6) ◽  
pp. 1-16
Author(s):  
Yue MA ◽  
M. R. S. Shirazy ◽  
Q. Struss ◽  
P. Coudrain ◽  
J.P. Colonna ◽  
...  

The interest in silicon vapor chambers (SVCs) has increased in the recent years as they have been identified as efficient cooling systems for microelectronics. They present the advantage of higher thermal conductivity and smaller form factor compared to conventional heat spreaders. This work aims to investigate the potential miniaturization of these devices, preliminary to integration on the backside of mobile device chips, located as close as possible to hotspots. While detailed numerical models of vapor chamber operation are developed, an easy modeling with low computational cost is needed for an effective parametric study.  Based on the study of the operating limits, this paper shows the thinning potential of a water filled micropillar for a device operating below 10 W and identify the corresponding vapour core height, and wick thickness.


Author(s):  
Guangwen Huang ◽  
Wangyu Liu ◽  
Yuanqiang Luo ◽  
Tao Deng ◽  
Yong Li ◽  
...  

2021 ◽  
Author(s):  
Huihe Qiu ◽  
Yinchuang Yang

In this chapter, we describe surface modification techniques for enhancing heat/mass transfer and evaporation on heated surfaces. The effect of asymmetrical structure in designing a vapor chamber, patterned with multiscale micro/nanostructured surfaces will be introduced. The wettability patterned surface and its mechanism for improving the evaporation rate of a droplet and the thermal performance of nucleate boiling are discussed. An ultrathin vapor chamber based on a wettability patterned evaporator is introduced as a case for the application of the wettability pattern. Besides, modifying the surface with nanostructure to form a multiscale micro/nanostructured surface or superhydrophobic surface also enhances the phase change. Several types of heat spreaders are proposed to investigate the effects of multiscale micro/nanostructured surface and nanostructured superhydrophobic condenser on the thermal performance of the heat spreaders, respectively. The effects of multiscale micro/nanostructured evaporator surfaces with wettability patterns will be analyzed and experimental data will be presented.


Sign in / Sign up

Export Citation Format

Share Document