Evaluation of thermal and fluid dynamic performance parameters in aluminum foam compact heat exchangers

2020 ◽  
Vol 176 ◽  
pp. 115456 ◽  
Author(s):  
Bernardo Buonomo ◽  
Anna di Pasqua ◽  
Oronzio Manca ◽  
Sergio Nardini
Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


2020 ◽  
Vol 6 (6) ◽  
Author(s):  
Shiv Kumar ◽  
Dharamveer Singh

In recent years, thermal control systems performance has improved in numerous ways due to developments in control theory and information technology. Efforts have been made to produce more efficient heat exchangers by employing various methods of heat transfer enhancement.  An increase in heat exchanger performance can lead to a more economical design of heat exchanger which can help to make energy, material & cost savings related to a heat exchange process. Compact heat exchangers (CHEs) technologies are expected to be one of the solutions for the new generation heat exchanger.  In this paper are presented of the compact heat exchanger, Plate-fin heat exchanger, and Printed Circuit Heat Exchanger. And computation fluid dynamic is used which offers an alternative to the quick and inexpensive solution for the design and optimization of compact heat exchangers.


2015 ◽  
Vol 798 ◽  
pp. 205-209
Author(s):  
Diego Amorim Caetano de Souza ◽  
Lúben Cabezas Gómez ◽  
José Antônio da Silva

Every technological process developed since the beginning of humanity to the present day always involves some kind of energy use, either mechanical energy of the body or energy from burning fuel or the solar energy obtained from the sun. To manipulate and use that energy, the man always developed resources and equipment to allow it. Among the wide range of equipment, heat exchangers, designed to transfer heat from one fluid to another, will be analyzed in this work. To do this analysis, are used computational fluid dynamics (CFD) techniques to analyze the flow behavior of a compact heat exchanger, of tube and louvered fins type. After this step that aims to pull the parameters of efficiency, optimization features will be used to be able to propose a model for more efficient fin.


2015 ◽  
Vol 13 (4) ◽  
pp. 551-559 ◽  
Author(s):  
F. Devia ◽  
A. Marchitto ◽  
M. Fossa ◽  
G. Guglielmini

Abstract Uneven distribution of phases in plate heat exchangers is a cause of reduction in both thermal and fluid-dynamic performances. With respect to two-phase flows, phase separation in manifolds with several outlets is a complex phenomenon and no general rules are available for predicting the phase distribution at header–channel junctions. The design of compact heat exchangers and their distributors is still based on empirical approaches and both experimentation and numerical analyses are needed for defining the best geometries able to reduce the mass flow rate non-uniformities in parallel channels. In this paper, a series of CFD simulations are carried out to infer the effects of a protrusion fitting (inside the header) on the single-phase distribution in parallel upward vertical channels fed by a common horizontal distributor. The numerical results are compared with both experimental single-phase and two-phase (liquid/gas) experimental data. The effects of the operating conditions are investigated and general conclusions on the differences and analogies between single-phase and two-phase flows in the present problem are discussed.


2009 ◽  
Vol 16 (3) ◽  
pp. 301-314
Author(s):  
A. Dewan ◽  
V. Bharti ◽  
V. Mathur ◽  
U. K. Saha ◽  
P. Patro

Sign in / Sign up

Export Citation Format

Share Document