scholarly journals A Review on Design and optimization of shell and tube heat exchanger by varying parameters

2020 ◽  
Vol 6 (6) ◽  
Author(s):  
Shiv Kumar ◽  
Dharamveer Singh

In recent years, thermal control systems performance has improved in numerous ways due to developments in control theory and information technology. Efforts have been made to produce more efficient heat exchangers by employing various methods of heat transfer enhancement.  An increase in heat exchanger performance can lead to a more economical design of heat exchanger which can help to make energy, material & cost savings related to a heat exchange process. Compact heat exchangers (CHEs) technologies are expected to be one of the solutions for the new generation heat exchanger.  In this paper are presented of the compact heat exchanger, Plate-fin heat exchanger, and Printed Circuit Heat Exchanger. And computation fluid dynamic is used which offers an alternative to the quick and inexpensive solution for the design and optimization of compact heat exchangers.

Author(s):  
G. N. Xie ◽  
M. Zeng ◽  
Q. W. Wang

One of passive enhancement techniques, Extended Surfaces, are commonly employed in many heat exchangers to enlarge the heat transfer area on gases side because of the low heat transfer coefficients, which may be 10 to 100 times smaller than those of liquids side. The use of extended surfaces (or referred to as finned surfaces) will reduce the thermal resistance of gases side. Enhanced heat transfer coefficient will be achieved by using the basic surface geometries: plate-fin and tube-fin. With respect to the tube-fin type heat exchanger, fins may be employed outside tubes (herein called outer-fins) to enhance the heat transfer of shell-side, and alternatively fins may be also employed inside tubes (herein called inner-fins) to increase the intensity of heat transfer of tube-side. The desire to accomplish the gas-to-gas heat exchange through the tubular heat exchangers will lead to develop heat transfer enhancement techniques for outside and inside tubes. Therefore based on integration with such two mechanisms, namely, outer-fins and inner-fins of enhancement heat transfer techniques, a kind of outer-fins and inner-fins tube heat exchanger has been preliminary proposed (ASME-IGTI, Paper No.2006-90260 [20]). Such heat exchanger is potentially used in gas-to-gas heat exchangers, especially used for highpressure operating conditions, where the plate-fin heat exchangers might not be applicable. In general, the design task is a complex trial-and-error process and there is always the possibility that the design results such as geometrical parameters are not the optimum. Therefore, the motivation of this paper is to conduct optimum designs of such heat exchanger (hereafter called Outer-Fins and Inner-Fins tube Heat Exchanger, OFIF HE). A computational intelligent technique, Genetic Algorithm (GA) is applied to search and optimize geometrical parameters of the OFIF HE. The minimum total volume or minimum total annual cost of such OFIF HE is taken as an objective function in the GA respectively. The results show that the optimized OFIF HE provides lower total volume or lower total annual cost than those presented in previous work. The method is universal and may be used for design and optimization of OFIF HEs under different specified duties and design objectives.


2019 ◽  
Vol 5 (10) ◽  
pp. 3
Author(s):  
Sunil Kumar ◽  
Ravindra Mohan

Heat exchanger is an important device which is used in thermal systems in many industrial fields. Nano fluids are recently employed as coolants to improve the efficacy of heat exchangers. Regarding unique characteristics of Nano fluids, research studies in this area have witnessed a remarkable growth. Latest investigations conducted on use of Nano fluids in heat exchangers including those carried out on plate heat exchangers, double pipe heat exchangers, shell and tube heat exchangers, and compact heat exchangers are reviews and summarized. Meanwhile, some very interesting aspects of Nano fluids in combination with heat exchangers are presented.  The challenges and prospects for future research are presented in this paper.


1982 ◽  
Vol 104 (4) ◽  
pp. 683-690 ◽  
Author(s):  
C. P. Hedderich ◽  
M. D. Kelleher ◽  
G. N. Vanderplaats

A computer code has been developed for analysis of air-cooled heat exchangers and was coupled with a numerical optimization program to produce an automated air-cooled, heat-exchanger design and optimization procedure. A general iteration free approximation method was used for the analysis which calculates the mean overall heat-transfer coefficient and the overall pressure drop for many flow arrangements. The analysis takes into account the variation of the heat-transfer coefficients and the pressure drop with temperature and/or length of flow path. The code is not limited to surfaces found in the literature, but will accommodate any triangular pitch bank of finned tubes in multiple-pass configurations. The numerical optimization code is a general purpose program based on the Method of Feasible Directions and the Augmented Lagrange Multiplier Method. The capability is demonstrated by the design of an air-to-water finned-tube heat exchanger and is shown to be a useful tool for heat exchanger design.


2014 ◽  
Author(s):  
Marco Carriglio ◽  
Alberto Clarich ◽  
Rosario Russo ◽  
Enrico Nobile ◽  
Paola Ranut

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jiuyi Liu ◽  
Caifu Qian ◽  
Huifang Li

Thermal stress is an important factor influencing the strength of a heat exchanger tubesheet. Some studies have indicated that, even in floating-head or U-tube heat exchangers, the thermal stress at the tubesheet is significant in magnitude. For exploring the value, distribution, and the influence factors of the thermal stress at the tubesheet of these kind heat exchangers, a tubesheet and triangle arranged tubes with the tube diameter of 25 mm were numerically analyzed. Specifically, the thermal stress at the tubesheet center is concentrated and analyzed with changing different parameters of the tubesheet, such as the temperature difference between tube-side and shell-side fluids, tubesheet diameter, thickness, and the tube-hole area ratio. It is found that the thermal stress of the tubesheet of floating-head or U-tube heat exchanger was comparable in magnitude with that produced by pressures, and the distribution of the thermal stress depends on the tube-hole area and the temperature inside the tubes. The thermal stress at the center of the tubesheet surface is high when tube-hole area ratio is very low. And with increasing the tube-hole area ratio, the stress first decreases rapidly and then increases linearly. A formula was numerically fitted for calculating the thermal stress at the tubesheet surface center which may be useful for the strength design of the tubesheet of floating-head or U-tube heat exchangers when considering the thermal stress. Numerical tests show that the fitted formula can meet the accuracy requirements for engineering applications.


2021 ◽  
Vol 9 (1) ◽  
pp. 60-71
Author(s):  
Abeth Novria Sonjaya ◽  
Marhaenanto Marhaenanto ◽  
Mokhamad Eka Faiq ◽  
La Ode M Firman

The processed wood industry urgently needs a dryer to improve the quality of its production. One of the important components in a dryer is a heat exchanger. To support a durable heat transfer process, a superior material is needed. The aim of the study was to analyze the effectiveness of the application of cross-flow flat plate heat exchangers to be used in wood dryers and compare the materials used and simulate heat transfer on cross-flow flat plate heat exchangers using Computational Fluid Dynamic simulations. The results showed that there was a variation in the temperature out of dry air and gas on the flat plate heat exchanger and copper material had a better heat delivery by reaching the temperature out of dry air and gas on the flat plate type heat exchanger of successive cross flow and.   overall heat transfer coefficient value and the effectiveness value of the heat exchanger of the heat transfer characteristics that occur with the cross-flow flat plate type heat exchanger in copper material of 251.74725 W/K and 0.25.


2016 ◽  
Vol 37 (4) ◽  
pp. 137-159 ◽  
Author(s):  
Rafał Andrzejczyk ◽  
Tomasz Muszyński

Abstract The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.


Author(s):  
Venkata Rajesh Saranam ◽  
Peter Carter ◽  
Kyle Rozman ◽  
Ömer Dogan ◽  
Brian K. Paul

Abstract Hybrid compact heat exchangers (HCHEs) are a potential source of innovation for intermediate heat exchangers in nuclear industry, with HCHEs being designed for Gen-IV nuclear power applications. Compact heat exchangers are commonly fabricated using diffusion bonding, which can provide challenges for HCHEs due to resultant non-uniform stress distributions across hybrid structures during bonding, leading to variations in joint properties that can compromise performance and safety. In this paper, we introduce and evaluate a heuristic for determining whether a feasible set of diffusion bonding conditions exist for producing HCHE designs capable of meeting regulatory requirements under nuclear boiler and pressure vessel codes. A diffusion bonding model for predicting pore elimination and structural analyses are used to inform the heuristic and a heat exchanger design for 316 stainless steel is used to evaluate the efficacy of the heuristic to develop acceptable diffusion bonding parameters. A set of diffusion bonding conditions were identified and validated experimentally by producing various test coupons for evaluating bond strength, ductility, porosity, grain size, creep rupture, creep fatigue and channel deviation. A five-layer hybrid compact heat exchanger structure was fabricated and tensile tested demonstrating that the bonding parameters satisfy all criteria in this paper for diffusion bonding HCHEs with application to the nuclear industry.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1762 ◽  
Author(s):  
Zhe Wang ◽  
Fenghui Han ◽  
Yulong Ji ◽  
Wenhua Li

A marine seawater source heat pump is based on the relatively stable temperature of seawater, and uses it as the system’s cold and heat source to provide the ship with the necessary cold and heat energy. This technology is one of the important solutions to reduce ship energy consumption. Therefore, in this paper, the heat exchanger in the CO2 heat pump system with graphene nano-fluid refrigerant is experimentally studied, and the influence of related factors on its heat transfer enhancement performance is analyzed. First, the paper describes the transformation of the heat pump system experimental bench, the preparation of six different mass concentrations (0~1 wt.%) of graphene nanofluid and its thermophysical properties. Secondly, this paper defines graphene nanofluids as beneficiary fluids, the heat exchanger gains cold fluid heat exergy increase, and the consumption of hot fluid heat is heat exergy decrease. Based on the heat transfer efficiency and exergy efficiency of the heat exchanger, an exergy transfer model was established for a seawater source of tube heat exchanger. Finally, the article carried out a test of enhanced heat transfer of heat exchangers with different concentrations of graphene nanofluid refrigerants under simulated seawater constant temperature conditions and analyzed the test results using energy and an exergy transfer model. The results show that the enhanced heat transfer effect brought by the low concentration (0~0.1 wt.%) of graphene nanofluid is greater than the effect of its viscosity on the performance and has a good exergy transfer effectiveness. When the concentration of graphene nanofluid is too high, the resistance caused by the increase in viscosity will exceed the enhanced heat transfer gain brought by the nanofluid, which results in a significant decrease in the exergy transfer effectiveness.


Sign in / Sign up

Export Citation Format

Share Document