Thermo-hydraulic performance of wavy microchannel heat sink with oblique grooved finned

2021 ◽  
Vol 189 ◽  
pp. 116719
Author(s):  
Yousef Alihosseini ◽  
Mohammad Zabetian Targhi ◽  
Mohammad Mahdi Heyhat
Author(s):  
Zahir Uddin Ahmed ◽  
Md. Roni Raihan ◽  
Omidreza Ghaffari ◽  
Muhammad Ikhlaq

Abstract Microchannel heat sink is an effective method in compact and faster heat transfer applications. This paper numerically investigates thermal and hydraulic characteristics of a porous microchannel heat sink (PMHS) using various nanofluids. The effect of porosity, inlet velocity and nanoparticle concentration on thermal-hydraulic performance is systematically examined. The result shows a significant temperature increase (40°C) of the coolant in the porous zone. The pressure drop reduces by 35% for γ = 0.32 compared to the non-porous counterpart, and this reduction of pressure significantly continues when γ further increases. The pressure drop with win is linear for PMHS with nanofluids, and the change in pressure drop is steeper for nanofluids compared to their base fluids. The average heat transfer coefficients increases about 2.5 times for PMHS, and a further increase of 6% in is predicted with the addition of nanoparticle. The average Nusselt number increases non-linearly with Re for PMHS. The friction factor reduces by 50% when γ increases from 0.32 to 0.60, and the effect of nanofluid on friction factor is insignificant beyond the mass flow rate of 0.0004 kg/s. Whilst Cu and CuO nanoparticles help to dissipate the larger amount of heat from the microchannel, Al2O3 nanoparticle appears to have a detrimental effect on heat transfer. The thermal-hydraulic performance factor strongly depends on the nanoparticles, and it slightly decreases with the mass flow rate. The increase of nanoparticle concentration, in general, enhances both h and ΔP linearly for the range considered.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 231
Author(s):  
Basel AL Muallim ◽  
Mazlan A. Wahid ◽  
Hussein A. Mohammed ◽  
Mohammed Kamil ◽  
Daryoush Habibi

In this study, the numerical conjugate heat transfer and hydraulic performance of nanofluids flow in a rectangular microchannel heat sink (RMCHS) with longitudinal vortex generators (LVGs) was investigated at different Reynolds numbers (200–1200). Three-dimensional simulations are performed on a microchannel heated by a constant temperature with five different configurations with different angles of attack for the LVGs under laminar flow conditions. The study uses five different nanofluid combinations of Al2O3 or CuO, containing low volume fractions in the range of 0.5% to 3.0% with various nanoparticle sizes that are dispersed in pure water, PAO (Polyalphaolefin) or ethylene glycol. The results show that for Reynolds number ranging from 100 to 1100, Al2O3–water has the best performance compared with CuO nanofluid with Nusselt number values between 7.67 and 14.7, with an associated increase in Fanning friction factor by values of 0.0219–0.095. For the case of different base fluids, the results show that CuO–PAO has the best performance with Nusselt number values between 9.57 and 15.88, with an associated increase in Fanning friction factor by 0.022–0.096. The overall performance of all configurations of microchannels equipped with LVGs and nanofluid showed higher values than the ones without LVG and water as a working fluid.


Sign in / Sign up

Export Citation Format

Share Document