Hydroxyapatite (HA) microparticles labeled with 32P – A promising option in the radiation synovectomy for inflamed joints

2016 ◽  
Vol 116 ◽  
pp. 85-91 ◽  
Author(s):  
A. Rajeswari ◽  
K.V. Vimalnath ◽  
H.D. Sarma ◽  
Priyalata Shetty ◽  
Shahiralm Khan Mohammed ◽  
...  
2006 ◽  
Vol 45 (01) ◽  
pp. 57-61
Author(s):  
M. Puille ◽  
D. Steiner ◽  
R. Bauer ◽  
R. Klett

Summary Aim: Multiple procedures for the quantification of activity leakage in radiation synovectomy of the knee joint have been described in the literature. We compared these procedures considering the real conditions of dispersion and absorption using a corpse phantom. Methods: We simulated different distributions of the activity in the knee joint and a different extra-articular spread into the inguinal lymph nodes. The activity was measured with a gammacamera. Activity leakage was calculated by measuring the retention in the knee joint only using an anterior view, using the geometric mean of anterior and posterior views, or using the sum of anterior and posterior views. The same procedures were used to quantify the activity leakage by measuring the activity spread into the inguinal lymph nodes. In addition, the influence of scattered rays was evaluated. Results: For several procedures we found an excellent association with the real activity leakage, shown by an r² between 0.97 and 0.98. When the real value of the leakage is needed, e. g. in dosimetric studies, simultaneously measuring of knee activity and activity in the inguinal lymph nodes in anterior and posterior views and calculation of the geometric mean with exclusion of the scatter rays was found to be the procedure of choice. Conclusion: When measuring of activity leakage is used for dosimetric calculations, the above-described procedure should be used. When the real value of the leakage is not necessary, e. g. for comparing different therapeutic modalities, several of the procedures can be considered as being equivalent.


1997 ◽  
Vol 36 (02) ◽  
pp. 71-75 ◽  
Author(s):  
S. Glatz ◽  
S. N. Reske ◽  
K. G. Grillenberger

Summary Aim: One therapeutic approach to rheumatoid arthritis and other inflammatory arthropathies besides surgical removal of inflamed synovium is radiation synovectomy using beta-emitting radionuclides to destroy the affected synovial tissue. Up to now the major problem associated with the use of labeled particles or colloids has been considerable leakage of radionuclides from the injected joint coupled with high radiation doses to liver and other non target organs. In this study we compared 188Re labeled hydroxyapatite particles and 188Re rhenium sulfur colloid for their potential use in radiation synovectomy. Methods: To this end we varied the labeling conditions (concentrations, pH-value, heating procedure) and analyzed the labeling yield, radiochemical purity, and in vitro stability of the resulting radiopharmaceutical. Results: After optimizing labeling conditions we achieved a labeling yield of more than 80% for 188Re hydroxyapatite and more than 90% for the rhenium sulfur colloid. Both of the radiopharmaceuticals can be prepared under aseptic conditions using an autoclav for heating without loss of activity. In vitro stability studies using various challenge solutions (water, normal saline, diluted synovial fluid) showed that 188Re labeled hydroxyapatite particles lost about 80% of their activity within 5 d in synovial fluid. Rhenium sulfur colloid on the other hand proved to be very stable with a remaining activity of more than 93% after 5 d in diluted synovial fluid. Conclusion: These in vitro results suggest that 188Re labeled rhenium sulfur colloid expects to be more suitable for therapeutic use in radiation synovectomy than the labeled hydroxyapatite particles.


2005 ◽  
Vol 26 (11) ◽  
pp. 1027-1035 ◽  
Author(s):  
Klaus Schom??cker ◽  
Markus Dietlein ◽  
Gynter M??dder ◽  
Barbara Boddenberg-P??tzold ◽  
Beate Zimmermanns ◽  
...  

2005 ◽  
Vol 48 (spe2) ◽  
pp. 153-158 ◽  
Author(s):  
Carla Flávia de Lima ◽  
Tarcisio Passos Ribeiro de Campo

Rheumatoid arthritis can manifest itself through synovitis, of which the knee is the common locale. The treatment using an intra-articular radioisotope injection has been applied in various countries. In this work, the dose of radioactive material absorbed in the joint is evaluated, taking into consideration the dose received in the articular cartilage and adjacencies using a three-dimensional voxel model representing the knee. The radioisotopes studied were Samarium-153 and Dysprosium-165. The results show that the synovial membrane receives 85 to 98% of the normalized dose taken from all voxels representative of the synovium. The following features of 153Sm and of 165Dy - its short physical half-life, the gamma emissions with low energy which allow monitoring the injection trough scintigraphy images, the possibility of binding themselves to macroaggregates that are retained in the joint, the high percentage of the effective dose spread in the synovial membrane - make these suitable radioisotopes for radiation synovectomy.


1995 ◽  
Vol 22 (9) ◽  
pp. 970-976 ◽  
Author(s):  
Gavin Clunie ◽  
Peter J. Ell

Sign in / Sign up

Export Citation Format

Share Document