Equivalent dose calculation in simulation of lung cancer treatment and analysis of dose distribution profile

2018 ◽  
Vol 142 ◽  
pp. 227-233
Author(s):  
Jardel Lemos Thalhofer ◽  
Ademir Xavier Silva ◽  
Wilson Freitas Rebello ◽  
Juraci Passos Reis Junior ◽  
José Marques Lopes ◽  
...  
2012 ◽  
Vol 39 (6Part18) ◽  
pp. 3830-3830
Author(s):  
J Li ◽  
Y Xiao ◽  
A Harrison ◽  
Y Yu

2019 ◽  
Vol 133 ◽  
pp. S1105
Author(s):  
S. Bellefqih ◽  
B. Benadon ◽  
A. Roque ◽  
N. Gaillot ◽  
S. Servagi-Vernat

2020 ◽  
Vol 23 (10) ◽  
pp. 1064-1079
Author(s):  
Ahmet Alper Öztürk ◽  
İrem Namlı ◽  
Kadri Güleç ◽  
Şennur Görgülü

Aims: To prepare lamivudine (LAM)-loaded-nanoparticles (NPs) that can be used in lung cancer treatment. To change the antiviral indication of LAM to anticancer. Background: The development of anticancer drugs is a difficult process. One approach to accelerate the availability of drugs is to reclassify drugs approved for other conditions as anticancer. The most common route of administration of anticancer drugs is intravenous injection. Oral administration of anticancer drugs may considerably change current treatment modalities of chemotherapy and improve the life quality of cancer patients. There is also a potentially significant economic advantage. Objective: To characterize the LAM-loaded-NPs and examine the anticancer activity. Methods: LAM-loaded-NPs were prepared using Nano Spray-Dryer. Properties of NPs were elucidated by particle size (PS), polydispersity index (PDI), zeta potential (ZP), SEM, encapsulation efficiency (EE%), dissolution, release kinetics, DSC and FT-IR. Then, the anticancer activity of all NPs was examined. Results: The PS values of the LAM-loaded-NPs were between 373 and 486 nm. All NPs prepared have spherical structure and positive ZP. EE% was in a range of 61-79%. NPs showed prolonged release and the release kinetics fitted to the Weibull model. NPs structures were clarified by DSC and FT-IR analysis. The results showed that the properties of NPs were directly related to the drug:polymer ratio of feed solution. NPs have potential anticancer properties against A549 cell line at low concentrations and non-toxic to CCD 19-Lu cell line. Conclusion: NPs have potential anticancer properties against human lung adenocarcinoma cells and may induce cell death effectively and be a potent modality to treat this type of cancer. These experiments also indicate that our formulations are non-toxic to normal cells. It is clear that this study would bring a new perspective to cancer therapy.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 231 ◽  
Author(s):  
Juthathip Poofery ◽  
Patompong Khaw-on ◽  
Subhawat Subhawa ◽  
Bungorn Sripanidkulchai ◽  
Apichat Tantraworasin ◽  
...  

The incidence of lung cancer has increased while the mortality rate has continued to remain high. Effective treatment of this disease is the key to survival. Therefore, this study is a necessity in continuing research into new effective treatments. In this study we determined the effects of three different Thai herbs on lung cancer. Bridelia ovata, Croton oblongifolius, and Erythrophleum succirubrum were extracted by ethyl acetate and 50% ethanol. The cytotoxicity was tested with A549 lung cancer cell line. We found four effective extracts that exhibited toxic effects on A549 cells. These extracts included ethyl acetate extracts of B. ovata (BEA), C. oblongifolius (CEA), and E. succirubrum (EEA), and an ethanolic extract of E. succirubrum (EE). Moreover, these effective extracts were tested in combination with chemotherapeutic drugs. An effective synergism of these treatments was found specifically through a combination of BEA with methotrexate, EE with methotrexate, and EE with etoposide. Apoptotic cell death was induced in A549 cells by these effective extracts via the mitochondria-mediated pathway. Additionally, we established primary lung cancer and normal epithelial cells from lung tissue of lung cancer patients. The cytotoxicity results showed that EE had significant potential to be used for lung cancer treatment. In conclusion, the four effective extracts possessed anticancer effects on lung cancer. The most effective extract was found to be E. succirubrum (EE).


2021 ◽  
Vol 37 (4) ◽  
pp. 643-653
Author(s):  
Sarah Janse ◽  
Ellen Janssen ◽  
Tanya Huwig ◽  
Upal Basu Roy ◽  
Andrea Ferris ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document