Soil pH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast China: Jilin Province case

2020 ◽  
Vol 155 ◽  
pp. 103629
Author(s):  
Zhiwei Xu ◽  
Tianyu Zhang ◽  
Shengzhong Wang ◽  
Zucheng Wang
2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6090 ◽  
Author(s):  
Craig R. Anderson ◽  
Michelle E. Peterson ◽  
Rebekah A. Frampton ◽  
Simon R. Bulman ◽  
Sandi Keenan ◽  
...  

Rapid and transient changes in pH frequently occur in soil, impacting dissolved organic matter (DOM) and other chemical attributes such as redox and oxygen conditions. Although we have detailed knowledge on microbial adaptation to long-term pH changes, little is known about the response of soil microbial communities to rapid pH change, nor how excess DOM might affect key aspects of microbial N processing. We used potassium hydroxide (KOH) to induce a range of soil pH changes likely to be observed after livestock urine or urea fertilizer application to soil. We also focus on nitrate reductive processes by incubating microcosms under anaerobic conditions for up to 48 h. Soil pH was elevated from 4.7 to 6.7, 8.3 or 8.8, and up to 240-fold higher DOM was mobilized by KOH compared to the controls. This increased microbial metabolism but there was no correlation between DOM concentrations and CO2respiration nor N-metabolism rates. Microbial communities became dominated byFirmicutesbacteria within 16 h, while few changes were observed in the fungal communities. Changes in N-biogeochemistry were rapid and denitrification enzyme activity (DEA) increased up to 25-fold with the highest rates occurring in microcosms at pH 8.3 that had been incubated for 24-hour prior to measuring DEA. Nitrous oxide reductase was inactive in the pH 4.7 controls but at pH 8.3 the reduction rates exceeded 3,000 ng N2–N g−1h−1in the presence of native DOM. Evidence for dissimilatory nitrate reduction to ammonium and/or organic matter mineralisation was observed with ammonium increasing to concentrations up to 10 times the original native soil concentrations while significant concentrations of nitrate were utilised. Pure isolates from the microcosms were dominated byBacillusspp. and exhibited varying nitrate reductive potential.


2017 ◽  
Vol 14 (20) ◽  
pp. 4815-4827 ◽  
Author(s):  
Chuang Zhang ◽  
Xin-Yu Zhang ◽  
Hong-Tao Zou ◽  
Liang Kou ◽  
Yang Yang ◽  
...  

Abstract. The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but were negatively correlated with the ammonium contents. The soil enzyme activities varied seasonally, and were highest in March and lowest in October. In contrast, the contents of the microbial PLFA biomarkers were higher in October than in March and June. Ammonium may inhibit the contents of PLFA biomarkers more strongly than nitrate because of acidification. This study has provided useful information about the effects of ammonium and nitrate on soil microbial communities and enzyme activities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xingjia He ◽  
Hua Xie ◽  
Danmei Gao ◽  
M. Khashi U. Rahman ◽  
Xingang Zhou ◽  
...  

The application of biochar stimulates the activities of microorganisms that affect soil quality and plant growth. However, studies on the impacts of biochar mainly focus on a monoculture, its effects on interspecific interactions are rarely reported. Here, we investigated the impacts of biochar on tomato/potato–onion intercropped (TO) in a pot experiment. Tomato monoculture (T) and TO were treated with no, 0.3, 0.6, and 1.2% biochar concentrations in a pot experiment. Microbial communities from tomato rhizosphere soil were analyzed by quantitative PCR and Illumina MiSeq. The results showed that compared with the tomato monoculture, 0.6%TO and 1.2%TO significantly increased tomato yield in 2018. TO and 1.2%TO significantly increased plant height and dry weight in 2018 and 2019. Biochar treatments increased soil pH, decreased NO3--N and bulk density, and increased the absorption of N, P, and K by tomato. Bacterial and fungal abundances increased with an increase in biochar concentration, while Bacillus spp. and Pseudomonas spp. abundances showed an “increase-decrease-increase” trend. Biochar had a little effect on bacterial diversities but significantly lowered fungal diversities. TO, 0.6%TO, and 1.2%TO increased the potentially beneficial organisms (e.g., Pseudeurotium and Solirubrobacter) and lowered the potentially pathogenic organisms (e.g., Kribbella and Ilyonectria). Different concentrations of biochar affected the bacterial and fungal community structures. Redundancy analysis indicated that the bacterial community was strongly correlated with soil pH, NO3--N, and EC, while the fungal community was closely related to soil NO3--N and moisture. The network analysis showed that biochar and intercropping affected the symbiosis pattern of the microorganisms and increased the proportion of positive interactions and nitrifying microorganisms (Nitrospirae) in the microbial community. Overall, our results indicated that monoculture and intercropping with biochar improved soil physicochemical states and plant nutrient absorption, and regulated soil microbial communities, these were the main factors to promote tomato growth and increase tomato productivity.


2017 ◽  
Author(s):  
Chuang Zhang ◽  
Xin-Yu Zhang ◽  
Hong-Tao Zou ◽  
Liang Kou ◽  
Yang Yang ◽  
...  

Abstract. The ratios of nitrate to ammonium in wet atmosphere nitrogen (N) deposition compounds were increasing recently. However, the individual effects of nitrate and ammonium deposition on soil microbial communities biomass and enzyme activities are still unclear. We conducted a four-year N addition field experiment to evaluate the responses of soil microbial communities biomass and enzyme activities to ammonium (NH4Cl) and nitrate (NaNO3) additions. Our results showed that (1) the inhibitory effects of ammonium additions on total mass of phospholipid fatty acid (PLFA) were stronger than those of nitrate additions. Both decreased total PLFA mass about 24 % and 11 %, respectively. The inhibitory effects of ammonium additions on gram positive bacteria (G+) and bacteria, fungi, actinomycetes (A), and arbuscular mycorrhizal fungi (AMF) PLFA mass ranged from 14 %–40 %. (2) Both ammonium and nitrate additions inhibited absolute activities of C, N, and P hydrolyses and oxidases, and nitrate additions had stronger inhibition effects on the acid phosphatase (AP) than ammonium additions. Both ammonium and nitrate additions decreased N-acquisition specific enzyme activities (enzyme activities normalized by total PLFA mass) about 21 % or 43 %, respectively. However, ammonium additions increased P-acquisition specific enzyme activities about 19 % comparing to control. (3) Redundancy analysis (RDA) showed that the measured C, N, and P hydrolyses and polyphenol oxidase (PPO) activities were positively correlated with soil pH and ammonium contents, but negatively with nitrate contents; the mass of PLFA biomarkers were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but negatively with ammonium contents. (4) The soil enzyme activities varied seasonally in the order of March > June > October. On the contrary, microbial PLFA mass was higher in October than in March and June. Our results concluded that inhibition of mass of PLFA biomarkers and enzyme activities might be contributed to acidification caused by ammonium addition. Soil absolute enzyme activities were inhibited indirectly by acidification and nitrification, but specific enzyme activities normalized by PLFA were directly affected by N additions. It was meaningful to separate the effects of ammonium and nitrate additions on soil microbial communities and enzyme activities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Wang ◽  
Yujie Jin ◽  
Ping Han ◽  
Jianjun Hao ◽  
Hongyu Pan ◽  
...  

Soil treatment with disinfectants has been used for controlling soilborne phytopathogens. Besides suppressing specific pathogens, how these disinfectants impact soil health, especially soil microbial communities, is yet to be systemically determined. The objectives of this study were to examine the effects of three representative disinfectants, including the dazomet fumigant, fenaminosulf fungicide, and kasugamycin antibiotic on chemical properties, enzymatic activities, and microbial communities in soil for cucumber cultivation. Results showed that 14 days after soil treatment with these chemicals, residual content of dazomet and kasugamycin quickly declined in soil and were undetectable, while fenaminosulf residues were found at 0.48 ± 0.01 mg/kg. Total nitrogen and total carbon increased in soil after dazomet treatment. Urease and sucrase activities were significantly restrained after disinfectant application. The disinfectants did not significantly change the taxon of predominant bacteria and fungi but altered the relative abundance and diversity of soil microbiome, as well as microbial interspecific relationships. Moreover, cucumber cultivation enhanced the overall soil microbial diversity and enzymatic activities, which diminished the difference of soil microbiome among four treatments. The difference in soil microbial diversity among the four treatments became smaller after planting cucumber. Thus, soil microbial communities were affected by soil disinfectants and gradually recovered by cucumber application.


2019 ◽  
Vol 39 (21) ◽  
Author(s):  
曹宏杰 CAO Hongjie ◽  
王立民 WANG Limin ◽  
徐明怡 XU Mingyi ◽  
黄庆阳 HUANG Qingyang ◽  
谢立红 XIE Lihong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document