Effect of substrate temperature and oxygen partial pressure on microstructure and optical properties of pulsed laser deposited yttrium oxide thin films

2011 ◽  
Vol 257 (17) ◽  
pp. 7665-7670 ◽  
Author(s):  
Maneesha Mishra ◽  
P. Kuppusami ◽  
T.N. Sairam ◽  
Akash Singh ◽  
E. Mohandas
2007 ◽  
Vol 561-565 ◽  
pp. 1233-1236
Author(s):  
Yasuhiro Shigetoshi ◽  
Susumu Tsukimoto ◽  
Hidehisa Takeda ◽  
Kazuhiro Ito ◽  
Masanori Murakami

The electrical and optical properties, and microstructures of 100 nm-thick Ga2O3 films fabricated on Al2O3(0001) substrates by a sputtering deposition were investigated. The partial pressure of oxygen was controlled and the substrate temperature was kept to be 500 °C during deposition. With increasing the oxygen partial pressure, the structures of the Ga2O3 films deposited on the substrates were observed to change from amorphous to crystalline (monoclinic β-type Ga2O3). The transmittance of the Ga2O3 films was measured to be more than 80 % at the visible and ultraviolet regions although the electrical resistivity was high. In order to obtain both low electrical resistivity and high transmittance at the ultraviolet regions, the addition of active dopant elements such as Sn into the Ga2O3 films would be required.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 410
Author(s):  
Jennet R. Rabo ◽  
Makoto Takayanagi ◽  
Takashi Tsuchiya ◽  
Hideki Nakajima ◽  
Kazuya Terabe ◽  
...  

Scandium (Sc) and yttrium (Y) co-doped ZrO2 (ScYSZ) thin films were prepared on a SiO2-Si substrate via pulsed laser deposition (PLD) method. In order to obtain good quality thin films with the desired microstructure, various oxygen partial pressures (PO2) from 0.01 Pa to 10 Pa and substrate temperatures (Ts) from 25 °C to 800 °C were investigated. X-ray diffraction (XRD) patterns results showed that amorphous ScYSZ thin films were formed at room substrate temperature while cubic polycrystalline thin films were obtained at higher substrate temperatures (Ts = 200 °C, 400 °C, 600 °C, 800 °C). Raman spectra revealed a distinct Raman shift at around 600 cm−1 supporting a cubic phase. However, a transition from cubic to tetragonal phase can be observed with increasing oxygen partial pressure. Photoemission spectroscopy (PES) spectra suggested supporting analysis that more oxygen vacancies in the lattice can be observed for samples deposited at lower oxygen partial pressures resulting in a cubic structure with higher dopant cation binding energies as compared to the tetragonal structure observed at higher oxygen partial pressure. On the other hand, dense morphologies can be obtained at lower  PO2 (0.01 Pa and 0.1 Pa) while more porous morphologies can be obtained at higher PO2 (1.0 Pa and 10 Pa).


Sign in / Sign up

Export Citation Format

Share Document