Ultra-clean PtPd nanoflowers loaded on GO supports with enhanced low-temperature electrocatalytic activity for fuel cells in harsh environment

2020 ◽  
Vol 511 ◽  
pp. 145603 ◽  
Author(s):  
Linlin Xu ◽  
Qingqiang Cui ◽  
Hua Zhang ◽  
Anxin Jiao ◽  
Yue Tian ◽  
...  
2020 ◽  
Vol 8 (16) ◽  
pp. 7704-7712 ◽  
Author(s):  
Qi Wang ◽  
Jie Hou ◽  
Yun Fan ◽  
Xiu-an Xi ◽  
Jun Li ◽  
...  

The performance of low-temperature solid-oxide fuel cells (LT-SOFCs) is heavily dependent on the electrocatalytic activity of the cathode toward the oxygen reduction reaction (ORR).


2019 ◽  
Vol 2 (2) ◽  
pp. 1210-1220 ◽  
Author(s):  
Sun Jae Kim ◽  
Taner Akbay ◽  
Junko Matsuda ◽  
Atsushi Takagaki ◽  
Tatsumi Ishihara

RSC Advances ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 11813-11820
Author(s):  
Fariba Kaedi ◽  
Zahra Yavari ◽  
Ahmad Reza Abbasian ◽  
Milad Asmaei ◽  
Kagan Kerman ◽  
...  

Structure and surface area are critical factors for catalysts in fuel cells.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yixiao Cai ◽  
Yang Chen ◽  
Muhammad Akbar ◽  
Bin Jin ◽  
Zhengwen Tu ◽  
...  

AbstractSince colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite, heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells (SOFCs). However, so far, the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3. In this study, a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3 (SDC–STO) are developed in a new bulk-heterostructure form and evaluated as electrolytes. The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550 °C for the optimal composition of 4SDC–6STO. Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm−1 at 450–550 °C, which shows remarkable enhancement compared to that of simplex SDC. Via AC impedance analysis, it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance. Furthermore, a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell. Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.


Sign in / Sign up

Export Citation Format

Share Document