Ion transport and mechanical properties of N-doped graphene composite Li3N SEI: A first principles calculation

2021 ◽  
pp. 150746
Author(s):  
Yuan Ren ◽  
Shenbo Yang ◽  
Xiyu Ma ◽  
Chao Zhang ◽  
Bingzheng Song ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 649 ◽  
Author(s):  
Zhou Fan ◽  
Min Hu ◽  
Jianyi Liu ◽  
Xia Luo ◽  
Kun Zhang ◽  
...  

To enhance the wettability between Ag atoms and graphene of graphene-reinforced silver-based composite filler, the adsorption behavior of Ag atoms on graphene was studied by first-principles calculation. This was based on band structure analysis, both p-type doping and n-type doping form, of the vacancy-defected and Ce-doped graphene. It was verified by the subsequent investigation on the density of states. According to the charge transfer calculation, p-type doping can promote the electron transport ability between Ag atoms and graphene. The adsorption energy and population analysis show that both defect and Ce doping can improve the wettability and stability of the Ag-graphene system. Seen from these theoretical calculations, this study provides useful guidance for the preparation of Ag-graphene composite fillers.


2014 ◽  
Vol 887-888 ◽  
pp. 378-383 ◽  
Author(s):  
Yu Chen ◽  
Zheng Jun Yao ◽  
Ping Ze Zhang ◽  
Dong Bo Wei ◽  
Xi Xi Luo ◽  
...  

The structure stability, mechanical properties and electronic structures of B2 phase FeAl intermetallic compounds and FeAl ternary alloys containing V, Cr or Ni were investigated using first-principles density functional theory calculations. Several models are established. The total energies, cohesive energies, lattice constants, elastic constants, density of states, and the charge densities of Fe8Al8 and Fe8XAl7 ( X=V, Cr, Ni ) are calculated. The stable crystal structures of alloy systems are determined due to the cohesive energy results. The calculated lattice contants of Fe-Al-X ( X= V, Cr, Ni) were found to be related to the atomic radii of the alloy elements. The calculation and analysis of the elastic constants showed that ductility of FeAl alloys was improved by the addition of V, Cr or Ni, the improvement was the highest when Cr was used. The order of the ductility was as follows: Fe8CrAl7 > Fe8NiAl7 > Fe8VAl7 > Fe8Al8. The results of electronic structure analysis showed that FeAl were brittle, mainly due to the orbital hybridization of the s, p and d state electron of Fe and the s and p state electrons of Al, showing typical characteristics of a valence bond. Micro-mechanism for improving ductility of FeAl is that d orbital electron of alloying element is maily involved in hybridization of FeAl, alloying element V, Cr and Ni decrease the directional property in bonding of FeAl.


2021 ◽  
Vol 43 (6) ◽  
pp. 623-623
Author(s):  
Jingyi Shan Jingyi Shan ◽  
Xiangling Wang Xiangling Wang ◽  
Junkai Wang Junkai Wang ◽  
Shixuan Zhang Shixuan Zhang ◽  
Qianku Hu and Aiguo Zhou Qianku Hu and Aiguo Zhou

The selective adsorption and capture of CO2 from post-combustion gases carries huge significance for the reduction of greenhouse effect. In this research, the computations of density functional are performed to investigate the CO2 selective adsorption of S-doped graphene in thrall to applied electric field (E-F). Introducing the applied E-F, the adsorption between S-doped graphene and CO2 is strong chemisorption, and CO2 can be effectively captured. Removing the applied E-F, the adsorption restores to physisorption and CO2 is easily desorbed. Therefore, the CO2 seize and clearing can be realized merely by controlling the E-F. Besides, the adsorption energy of N2 (H2O) on S-decorated graphene is positive when introduce the applied E-F. The results demonstrated that S-doped graphene can selectively adsorb CO2 from the post-combustion gases by controlling the E-F.


2019 ◽  
Vol 56 (9-10) ◽  
pp. 915-921 ◽  
Author(s):  
Mitsuhiro Itakura ◽  
Hiroki Nakamura ◽  
Toru Kitagaki ◽  
Takanori Hoshino ◽  
Masahiko Machida

2010 ◽  
Vol 654-656 ◽  
pp. 1670-1673
Author(s):  
Zhan Jun Gao ◽  
You Song Gu ◽  
Yue Zhang

First-principles density functional calculations were performed to investigate mechanical properties of ZnO nanowires and the size effects. Structural optimizations were performed first, and a series of strains were applied to the nanowires in the axial direction. The ground state energies were calculated and the elastic moduli of ZnO nanowires were obtained from the energy versus strain curves. It is found that the elastic moduli of the ZnO nanowires with three different diameters (1.2, 1.5 and 1.8nm) are 136.3, 138.7 and 138.0 GPa, respectively, and that of bulk ZnO along [0001] direction is 140.1 GPa. The elastic modulus of ZnO nanowire is slightly lower than that of the bulk and it decreases as the diameter decreases. Comparisons to experimental results and theoretical predications are made.


2012 ◽  
Vol 602-604 ◽  
pp. 870-873 ◽  
Author(s):  
Wei Zhao ◽  
Qing Yuan Meng

The adsorption of methane (CH4) molecule on the pristine and Al-doped (4, 8) graphene was investigated via the first-principles calculations. The results demonstrated that, in comparison to the adsorption of a CH4molecule on the pristine graphene sheet, a relatively stronger adsorption was observed between the CH4molecule and Al-doped graphene with a shorter adsorption distance, larger binding energy and more charge-transfer from the graphene surface to the CH4molecule. Therefore, the Al-doped graphene can be expected to be a novel sensor for the detection of CH4molecules in future applications.


2012 ◽  
Vol 61 (10) ◽  
pp. 108801
Author(s):  
Dai Yun-Ya ◽  
Yang Li ◽  
Peng Shu-Ming ◽  
Long Xing-Gui ◽  
Zhou Xiao-Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document