Novel preparation approach with a 2-step process for spherical particles with high drug loading and controlled size distribution using melt granulation: MALCORE®

2021 ◽  
pp. 103409
Author(s):  
Naoki Yoshihara ◽  
Ryota Kimata ◽  
Takayuki Terukina ◽  
Takanori Kanazawa ◽  
Hiromu Kondo
Author(s):  
Somasekhar M. Reddy ◽  
Navispaul N. Sriganth ◽  
Chandra S. Kumar ◽  
Santosh C. Gursale ◽  
Vijay V. Ragavan

Background: Nanosuspension technology has been developed as a promising candidate for efficient delivery of hydrophobic drugs. It could maintain the required crystalline state of the drug with reduced particle size, leading to an increased reporting on dissolution rate and therefore improved bioavailability.Methods: In this paper, we report on the preparation of Tamoxifen nanosuspension by high-pressure homogenization (HPH). The aim is to obtain a stable nanosuspension with an increased drug saturation solubility and dissolution velocity. The morphology and particle size distribution of the modified nanosuspensions were characterized by the means of several analyses that included: transmission electron microscopy (TEM), polarized light microscopy (PLM), scanning electron microscopy, differential scanning calorimetry (DSC) and powder X- ray diffractometry (XRD).Results: HPH was employed to produce aqueous drug nanosuspensions with fine solubility and dissolution properties, which render the produced particles stable up to one month. In addition, the prepared nanosuspensions possessed a high drug-loading efficiency (10%). The recoded zeta potential values (≈ -27 mV) indicated that the prepared nanosuspensions possess a higher degree of long-term stability. TEM data showed narrow size distribution with average size 322.7 nm. Morphologically, as indicated from results, the produced nanosuspensions have a homogenous distribution even after redispersion, indicating the stability of the product.Conclusions: It was possible to obtain Tamoxifen nanosuspensions with fine solubility and dissolution properties. Nanosuspensions possessed a high drug- loading (10%), which could reduce the dosage administration and gastrointestinal side effects. HPH can be employed to produce aqueous drug nanosuspensions that are stable up to one month. Aqueous nanosuspension can be converted to dry nanocrystals by lyophilization which offer superior physicochemical properties.


2018 ◽  
Author(s):  
Robert Luxenhofer ◽  
Michael M Lübtow ◽  
Lukas Hahn ◽  
Thomas Lorson ◽  
Rainer Schobert

Many natural compounds with interesting biomedical properties share one physicochemical property, namely a low water solubility. Polymer micelles are, among others, a popular means to solubilize hydrophobic compounds. The specific molecular interactions between the polymers and the hydrophobic drugs are diverse and recently it has been discussed that macromolecular engineering can be used to optimize drug loaded micelles. Specifically, π-π stacking between small molecules and polymers has been discussed as an important interaction that can be employed to increase drug loading and formulation stability. Here, we test this hypothesis using four different polymer amphiphiles with varying aromatic content and various natural products that also contain different relative amounts of aromatic moieties. While in the case of paclitaxel, having the lowest relative content of aromatic moieties, the drug loading decreases with increasing relative aromatic amount in the polymer, the drug loading of curcumin, having a much higher relative aromatic content, is increased. Interestingly, the loading using schizandrin A, a dibenzo[a,c]cyclooctadiene lignan with intermediate relative aromatic content is not influenced significantly by the aromatic content of the polymers employed. The very high drug loading, long term stability, the ability to form stable highly loaded binary coformulations in different drug combinations, small sized formulations and amorphous structures in all cases, corroborate earlier reports that poly(2-oxazoline) based micelles exhibit an extraordinarily high drug loading and are promising candidates for further biomedical applications. The presented results underline that the interaction between the polymers and the incorporated small molecules are complex and must be investigated in every specific case.<br>


2019 ◽  
Vol 233 ◽  
pp. 230-235 ◽  
Author(s):  
Li-li Lu ◽  
Wen-ya Xiong ◽  
Jun-bin Ma ◽  
Tian-fang Gao ◽  
Si-yuan Peng ◽  
...  

2021 ◽  
Vol 266 ◽  
pp. 118122
Author(s):  
Tianxing Chen ◽  
Yuan Yang ◽  
Hui Peng ◽  
Andrew K. Whittaker ◽  
Yao Li ◽  
...  

2021 ◽  
Vol 147 ◽  
pp. 110286
Author(s):  
Christian E. Ziegler ◽  
Moritz Graf ◽  
Sebastian Beck ◽  
Achim M. Goepferich

2010 ◽  
Vol 132 (12) ◽  
pp. 4259-4265 ◽  
Author(s):  
Youqing Shen ◽  
Erlei Jin ◽  
Bo Zhang ◽  
Caitlin J. Murphy ◽  
Meihua Sui ◽  
...  

2017 ◽  
Vol 533 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Jie Hou ◽  
Chunlei Guo ◽  
Yuzhi Shi ◽  
Ergang Liu ◽  
Weibing Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document