A novel anhydrous preparation of PEG hydrogels enables high drug loading with biologics for controlled release applications

2021 ◽  
Vol 147 ◽  
pp. 110286
Author(s):  
Christian E. Ziegler ◽  
Moritz Graf ◽  
Sebastian Beck ◽  
Achim M. Goepferich
2006 ◽  
Vol 23 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Carmen Rodriguez-Tenreiro ◽  
Carmen Alvarez-Lorenzo ◽  
Ana Rodriguez-Perez ◽  
Angel Concheiro ◽  
Juan J. Torres-Labandeira

Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 98
Author(s):  
Liangyu Lu ◽  
Mengyu Ma ◽  
Chengtao Gao ◽  
Hongwei Li ◽  
Long Li ◽  
...  

Modern pharmaceutics requires novel drug loading platforms with high drug loading capacity, controlled release, high stability, and good biocompacity. Metal–organic frameworks (MOFs) show promising applications in biomedicine owing to their extraordinarily high surface area, tunable pore size, and adjustable internal surface properties. However, MOFs have low stability due to weak coordinate bonding and limited biocompatibility, limiting their bioapplication. In this study, we fabricated MOFs/polysilsesquioxane (PSQ) nanocomposites and utilized them as drug carriers. Amine-functionalized MOF (UiO-66-NH2) nanoparticles were synthesized and encapsulated with epoxy-functionalized polysilsesquioxane layer on the surface via a facile process. MOFs possessed high surface area and regular micropores, and PSQs offered stability, inertness, and functionality. The obtained UiO-66-NH2@EPSQ nanocomposites were utilized as carriers for ibuprofen, a drug with carboxylic groups on the surface, and demonstrated high drug loading capacity and well-controlled release property. The UiO-66-NH2@EPSQ nanocomposite exhibited low cytotoxicity to HeLa cells within a wide concentration range of 10–100 µg/mL, as estimated by the MTT method. The UiO-66-NH2@EPSQ drug release system could be a potential platform in the field of controlled drug delivery.


2018 ◽  
Author(s):  
Robert Luxenhofer ◽  
Michael M Lübtow ◽  
Lukas Hahn ◽  
Thomas Lorson ◽  
Rainer Schobert

Many natural compounds with interesting biomedical properties share one physicochemical property, namely a low water solubility. Polymer micelles are, among others, a popular means to solubilize hydrophobic compounds. The specific molecular interactions between the polymers and the hydrophobic drugs are diverse and recently it has been discussed that macromolecular engineering can be used to optimize drug loaded micelles. Specifically, π-π stacking between small molecules and polymers has been discussed as an important interaction that can be employed to increase drug loading and formulation stability. Here, we test this hypothesis using four different polymer amphiphiles with varying aromatic content and various natural products that also contain different relative amounts of aromatic moieties. While in the case of paclitaxel, having the lowest relative content of aromatic moieties, the drug loading decreases with increasing relative aromatic amount in the polymer, the drug loading of curcumin, having a much higher relative aromatic content, is increased. Interestingly, the loading using schizandrin A, a dibenzo[a,c]cyclooctadiene lignan with intermediate relative aromatic content is not influenced significantly by the aromatic content of the polymers employed. The very high drug loading, long term stability, the ability to form stable highly loaded binary coformulations in different drug combinations, small sized formulations and amorphous structures in all cases, corroborate earlier reports that poly(2-oxazoline) based micelles exhibit an extraordinarily high drug loading and are promising candidates for further biomedical applications. The presented results underline that the interaction between the polymers and the incorporated small molecules are complex and must be investigated in every specific case.<br>


2019 ◽  
Vol 233 ◽  
pp. 230-235 ◽  
Author(s):  
Li-li Lu ◽  
Wen-ya Xiong ◽  
Jun-bin Ma ◽  
Tian-fang Gao ◽  
Si-yuan Peng ◽  
...  

2021 ◽  
Vol 266 ◽  
pp. 118122
Author(s):  
Tianxing Chen ◽  
Yuan Yang ◽  
Hui Peng ◽  
Andrew K. Whittaker ◽  
Yao Li ◽  
...  

2010 ◽  
Vol 132 (12) ◽  
pp. 4259-4265 ◽  
Author(s):  
Youqing Shen ◽  
Erlei Jin ◽  
Bo Zhang ◽  
Caitlin J. Murphy ◽  
Meihua Sui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document