Effects of replacing fish meal with rendered animal protein blend on growth performance, hepatic steatosis and immune status in hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂)

Aquaculture ◽  
2019 ◽  
Vol 511 ◽  
pp. 734203 ◽  
Author(s):  
Huaqun Ye ◽  
Yuanyuan Zhou ◽  
Ningning Su ◽  
Anli Wang ◽  
Xiaohong Tan ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Guofeng Chen ◽  
Bin Yin ◽  
Hongyu Liu ◽  
Beiping Tan ◽  
Xiaohui Dong ◽  
...  

Oligosaccharides have recently received much attention from researchers owing to their multiple biological activities. This study was conducted to investigate the effects of a diet with reduced fish meal and chitosan oligosaccharide (COS) supplementation on a hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Seven isonitrogenous and isolipidic types of diet were formulated to feed the groupers for 56 days. To prepare the feed, a reference diet (FM group) containing 55% fish meal was used. Concentrated cottonseed protein (CPC) was used to replace 45% of the fish meal protein, and different COS supplementation levels (0, 0.2%, 0.4, 0.6, 0.8, and 1%) were added. After an 8-week breeding trial, Vibrio harveyi bacteria were injected into the groupers for a 7-day challenge test. The results showed that the FM and COS0.4 groups showed the best growth performance among the groups (p < 0.05); however, there was no significant difference in the survival rate (p > 0.05). Unlike in the FM group, adhesion and breakage of the intestinal plica occurred in the COS0 group. The height and width of the gut fold reached maximum values in the COS0.4 group (p < 0.05). Microbiome sequencing suggested that there was a stable microbiota core in the gut of the groupers. With increasing COS levels, the abundance of both beneficial bacteria and conditional pathogens increased; the activities of serum glucose oxidase, catalase, and total superoxide dismutase also increased (p < 0.05). In the gut tissue, the activities of glutathione peroxidase, glutathione reductase, and glutamine increased first but then decreased (p < 0.05); the contents of lysozyme, acid phosphatase, complements C3 and C4, and IgM showed upward trends (p < 0.05). Compared with that in the FM group, the expression of IL-1β and TNF-α in the COS0 group was upregulated. Gene expression levels of TLR22, TGF-β, and Nrf2 increased first but then decreased with COS supplementation levels (p < 0.05). COS supplementation reduced the cumulative mortality of the groupers in the challenge test (p < 0.05). In general, the results of this study demonstrated that dietary COS supplementation enhanced growth performance, intestinal health, and antioxidant and immune responses of groupers fed with a low-fish meal diet. The optimal and acceptable levels of COS supplement were 0.45 and 0.4–0.6%, respectively; these values can provide a reference for developing aquatic prebiotics.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1003 ◽  
Author(s):  
Shimaa A. Amer ◽  
Ali Osman ◽  
Naif A. Al-Gabri ◽  
Shafika A. M. Elsayed ◽  
Ghada I. Abd El-Rahman ◽  
...  

The present study was conducted to assess the effect of replacing fish meal with whey protein concentrate (WPC) on the growth performance, histopathological condition of organs, economic efficiency, disease resistance to intraperitoneal inoculation of Aeromonas hydrophila, and the immune response of Oreochromis niloticus. The toxicity of WPC was tested by measuring the activity of caspase 3 as an indicator of cellular apoptosis. Oreochromis niloticus fingerlings with average initial weight 18.65 ± 0.05 gm/fish (n = 225) for a 10-week feeding trial. The fish were randomly allocated to five experimental groups, having five replacement percentages of fish meal with WPC: 0%, 13.8%, 27.7%, 41.6%, and 55.5% (WPC0, WPC13.8, WPC27.7, WPC41.6, and WPC55.5); zero percentage represented the control group. The results show that the fish fed WPC had the same growth performance as the WPC0. The total weight of bacterially challenged surviving fish increased linearly and quadratically (p ≤ 0.05) by increasing the replacement percentage of fish meal with WPC. The growth hormone, nitric oxide, IgM, complement 3, and lysozyme activity were seen to increase significantly in WPC27.7, especially after a bacterial challenge. The phagocytic percentage and phagocytic index increased significantly in WPC27.7, WPC41.6, and WPC55.5 groups. Histopathological examination of liver sections was badly affected by high replacement in WPC41.6–55.5. The activity of caspase 3 in the immunohistochemical stained sections of the intestine was increased significantly by increasing the inclusion level of WPC. Economically, the total return of the total surviving fish after the bacterial challenge was increased significantly by fish meal replacement with WPC. It could be concluded that WPC could replace the fish meal in Nile tilapia diets up to 27.7%, with improving the gut health, the total weight of survival fish, and immune status of fish challenged with A. hydrophila. High inclusion levels of WPC are not recommended in fish diets, since they negatively affected the intestinal and liver tissues and increased the level of cellular apoptosis, as indicated by the increased caspase 3 activity. Further researches are recommended to evaluate the effect of fish meal replacement with WPC on the histopathological examination of the kidney and to test the capacity of serum IgM to clot the bacteria used for the challenge.


Sign in / Sign up

Export Citation Format

Share Document