Relationship between myo-inositol synthesis and carbohydrate metabolism changes in Mozambique tilapia (Oreochromis mossambicus) under acute hypersaline stress

Aquaculture ◽  
2021 ◽  
Vol 532 ◽  
pp. 736005
Author(s):  
Jiahua Zhu ◽  
Xiaodan Wang ◽  
Xianyong Bu ◽  
Chunling Wang ◽  
Jingyu Pan ◽  
...  
2019 ◽  
Vol 34 (1) ◽  
pp. 14-21
Author(s):  
Karl Christofer Kingueleoua Koyakomanda ◽  
Muamer Kürşat Fırat ◽  
Cüneyt Süzer ◽  
Serhat Engin ◽  
Müge Hekimoğlu ◽  
...  

2017 ◽  
Vol 59 (4) ◽  
pp. 391-402 ◽  
Author(s):  
Jason P Breves ◽  
Paige L K Keith ◽  
Bethany L Hunt ◽  
K Keano Pavlosky ◽  
Mayu Inokuchi ◽  
...  

Teleosts inhabiting fresh water (FW) depend upon ion-absorptive ionocytes to counteract diffusive ion losses to the external environment. A Clc Cl−channel family member, Clc-2c, was identified as a conduit for basolateral Cl−transport by Na+/Cl−cotransporter 2 (Ncc2)-expressing ionocytes in stenohaline zebrafish (Danio rerio). It is unresolved whether Clc-2c/clc-2cis expressed in euryhaline species and how extrinsic and/or intrinsic factors modulate branchialclc-2cmRNA. Here, we investigated whether environmental salinity, prolactin (Prl) and osmotic conditions modulateclc-2cexpression in euryhaline Mozambique tilapia (Oreochromis mossambicus). Branchialclc-2candncc2mRNAs were enhanced in tilapia transferred from seawater (SW) to FW, whereas both mRNAs were attenuated upon transfer from FW to SW. Next, we injected hypophysectomized tilapia with ovine prolactin (oPrl) and observed a marked increase inclc-2cfrom saline-injected controls. To determine whether Prl regulatesclc-2cin a gill-autonomous fashion, we incubated gill filaments in the presence of homologous tilapia Prls (tPrl177and tPrl188). By 24 h, tPrl188stimulatedclc-2cexpression ~5-fold from controls. Finally, filaments incubated in media ranging from 280 to 450 mosmol/kg for 3 and 6 h revealed that extracellular osmolality exerts a local effect onclc-2cexpression;clc-2cwas diminished by hyperosmotic conditions (450 mosmol/kg) compared with isosmotic controls (330 mosmol/kg). Our collective results suggest that hormonal and osmotic control of branchialclc-2ccontributes to the FW adaptability of Mozambique tilapia. Moreover, we identify for the first time a regulatory link between Prl and a Clc Cl−channel in a vertebrate.


2003 ◽  
Vol 20 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Tsung-Han Lee ◽  
Shin-Huey Feng ◽  
Chia-Hao Lin ◽  
Yu-Hwa Hwang ◽  
Chao-Lu Huang ◽  
...  

2015 ◽  
Vol 309 (10) ◽  
pp. R1251-R1263 ◽  
Author(s):  
Mayu Inokuchi ◽  
Jason P. Breves ◽  
Shunsuke Moriyama ◽  
Soichi Watanabe ◽  
Toyoji Kaneko ◽  
...  

This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia ( Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na+/K+-ATPase α1a (NKA α1a) and Na+/Cl− cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na+/K+/2Cl− cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na+/H+ exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.


Sign in / Sign up

Export Citation Format

Share Document