scholarly journals Research for reducing minimum miscible pressure of crude oil and carbon dioxide and miscible flooding experiment by injecting citric acid isopentyl ester

2020 ◽  
Vol 13 (12) ◽  
pp. 9207-9215
Author(s):  
Yuejun Zhao ◽  
Guangjuan Fan ◽  
Yilin Li ◽  
Xiaodan Zhang ◽  
Hao Chen ◽  
...  
Author(s):  
Guangjuan Fan ◽  
Yuejun Zhao ◽  
Yilin Li ◽  
Xiaodan Zhang ◽  
Hao Chen

Carbon dioxide miscible flooding has become one of the important technologies for improving oil recovery. The Minimum Miscible Pressure (MMP) is the key parameter to realize miscible flooding. As the MMP in the research area is higher than the formation fracture pressure, miscible flooding cannot be formed. To address this problem, it is necessary to find a way to reduce the MMP. Citric acid isobutyl ester is chosen to reduce the MMP of carbon dioxide and crude oil in this research. The effect of citric acid isobutyl ester on reducing the MMP was measured by the method of long-slim-tube displacement experiment. The experiment results show that the MMP is 29.6 MPa and can be obviously reduced by injecting the slug of citric acid isobutyl ester. The MMP could decrease gradually with constantly adding the injected slug of citric acid isobutyl ester, but the decrease becomes smaller and smaller. The optimum injected slug size of the chemical reagent is 0.003 PV. Under the condition of the slug size, the MMP is reduced to 23.5 MPa and the reduction is 6.1 MPa.


2021 ◽  
Vol 9 ◽  
Author(s):  
Guangjuan Fan ◽  
Yuejun Zhao ◽  
Xiaodan Zhang ◽  
Yilin Li ◽  
Hao Chen

Carbon dioxide (CO2) injection has become an important technology to enhance oil recovery in ultra-low permeability reservoirs. Compared with other CO2 flooding technologies, CO2 miscible flooding has a better development effect, and the minimum miscible pressure (MMP) is a key parameter to realize miscible flooding. Therefore, it is very important to accurately predict the MMP. The prediction methods of MMP generally include laboratory experiment method and theoretical calculation method. In this study, a long-slim-tube displacement experiment method was used to determine the MMP in the study area, and the experimental temperature and pressure were consistent with those under reservoir conditions. The research results show that the recovery ratio increased gradually with the increase of experimental pressure, but the increase amplitude gradually decreased. According to the relation curve between crude oil recovery ratio and experimental displacement pressure, when the experimental pressure was larger than 29.6 MPa, the recovery ratio did not increase significantly with the increase of displacement pressure, which indicates that the interfacial tension between crude oil and CO2 disappeared under this pressure and they reached a miscible state. It is speculated that the MMP between crude oil and CO2 system in the study area predicted by the long-slim-tube displacement experiment method was 29.6 MPa. The results of this study help to realize miscible flooding in ultra-low permeability reservoirs and thus enhance oil recovery.


2017 ◽  
Vol 733 ◽  
pp. 42-46
Author(s):  
Habiba Shehu ◽  
Edidiong Okon ◽  
Edward Gobina

Shuttle tankers are becoming more widely used in deep water installations as a means of transporting crude oil to storage plants and refineries. The emissions of hydrocarbon vapours arise mainly during loading and offloading operations. Experiments have been carried out on the use of polyurethane/zeolite membrane on an alumina support for the separation of methane from carbon dioxide and oxygen. The physical properties of the membrane were investigated by FTIR. Single gas permeation tests with methane, propane, oxygen and carbon dioxide at a temperature of 293 K and pressure ranging from 0.1 to 1.0 x 10-5 Pa were carried out. The molar flux of the gases through the membrane was in the range of 3 x 10-2 to 1 x 10-1 molm-2s-1. The highest separation factor of CH4/CO2 and CH4/O2 and CH4/C3H8 was determined to be 1.7, 1.7 and 1.6 respectively.


1989 ◽  
Vol 7 (2) ◽  
pp. 207-215
Author(s):  
Dhia M. Kassim ◽  
Mustafa M.F. Al-Jarrah ◽  
Rita L. Apikian ◽  
Sondus A. Al-Asaf

2011 ◽  
Vol 239-242 ◽  
pp. 2650-2654
Author(s):  
Fu Chen ◽  
Jie He ◽  
Ping Guo ◽  
Yuan Xu ◽  
Cheng Zhong

According to the mechanisms of carbon dioxide miscible flooding and previous researchers’ work on synthesis of CO2-soluble surfactant, Citric acid isoamyl ester was synthesized, and it’s oil solubility and the rate of viscosity reduction both in oil-water system and oil were evaluated. And then we found that this compound can solve in oil effectively; the optimum mass of Citric acid isoamyl ester introduced in oil-water system is 0.12g when the mass ratio of oil and water is 7:3 (crude oil 23.4g, formation water 10g) and the experimental temperature is 50°C , the rate of viscosity reduction is 47.2%; during the evaluation of the ability of Citric acid isoamyl ester to decrease oil viscosity, we found that the optimum dosage of this compound in 20g crude oil is 0.2g when the temperature is 40°C, and the rate of viscosity reduction is 7.37% at this point.


2021 ◽  
Author(s):  
Marco Quatrosi

<p>The following paper analyses monthly trends for CO<sub>2 </sub>emissions from energy consumption for 31 European countries, four primary fuels (i.e., Crude Oil, Natural Gas, Hard Coal, Lignite) and three secondary fuels (i.e., Gas/Diesel Oil, LPG, Naphta, Petroleum Coke) from 2008 to 2019. Carbon dioxide emission has been estimated following the Reference Approach in the 2006 IPCC Guidelines for National Greenhouse Gasses Inventories. Country-specific (e.g. Tier 2) coefficient were retrieved from the IPCC Emission Factor Database and the UN Common Reporting Framework. Data on fuel consumption (e.g., Gross Inland Deliveries) were taken from the Eurostat database. This paper will fill some knowledge gap analysing monthly trends of carbon dioxide emissions for major EU Countries. As the progressive phase-out of carbon is taking place pretty much in all Europe, Crude Oil exerted the largest amount of carbon dioxide emissions in the period considered. Analysis of selected countries unveiled several clusters within the EU in terms of major source of emissions. As final step, the paper has endeavoured the task of fitting a model for monthly CO<sub>2 </sub>forecasting. The whole series presents two structural breaks and can be explained by an autoregressive model of the first order. Indeed, further speculations on a more appropriate fit and more fuels in the estimation, is demanded to other works.</p>


2012 ◽  
Vol 554-556 ◽  
pp. 404-407 ◽  
Author(s):  
Shi Jing Zhan ◽  
Xue Feng Zhu ◽  
Wei Ping Wang ◽  
Wei Shen Yang

Solid oxide components such as electrolyte for solid oxide fuel cell require chemical stability and high conductivity. Substituting Zr for Ce in BaCe0.8Nd0.2O3-δ improves the chemical stability but reduces conductivity. The objective of this work was to study the optimization of conductivity and chemical stability by changing the ratio of Ce to Zr in BZCN. Perovskite type BaZrxCe0.8-xNd0.2O3-δ (BZCN) powders were prepared by an EDTA–citric acid (EC) process. BaZrxCe0.8-xNd0.2O3-δ (x≥0.4) oxides show good chemical stability against carbon dioxide. The conductivities of sintered samples increased with the temperature and decrease with their Zr content. The good chemical stability and conductivity of BaZr0.4Ce0.4Nd0.2O3-δ is potential to be practically used with both high conductivity and good stability


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mingqiang Chen ◽  
Linsong Cheng ◽  
Renyi Cao ◽  
Chaohui Lyu ◽  
Deqiang Wang ◽  
...  

SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 712-731 ◽  
Author(s):  
Marcelo de A. Pasqualette ◽  
João N. E. Carneiro ◽  
Stein Tore Johansen ◽  
Bjørn Tore Løvfall ◽  
Roberto Fonseca ◽  
...  

Summary One-dimensional numerical simulations of carbon dioxide (CO2)-rich crude-oil flows were performed with a commercial simulator for a typical offshore production pipeline under steady-state scenarios. Mixtures with 20–50 mol% CO2 and gas/oil ratio (GOR) of 300–600 std m3/std m3 were thermodynamically modeled with the predictive Peng-Robinson (PPR78) equation of state (EOS) (Robinson and Peng 1978; Jaubert and Mutelet 2004), and fluid properties were tabulated in pressure/volume/temperature (PVT) lookup tables. Thorough analyses on the separate CO2 and GOR effects on several flow parameters (e.g., temperature drop, pressure gradient, and flow patterns) were performed. The occurrence of the simultaneous flow of liquid and an ambiguous dense phase was quantified and discussed in depth. The properties of those phases [e.g., Joule-Thomson coefficient, viscosity, interfacial tension (IFT), and gas/liquid-density ratio] along the pipeline for several mixtures and operational conditions were addressed as well. It was seen that the dense phase can be a problem for phase-identification criteria, which can affect the flow-simulation results. This was further analyzed in simple cases of horizontal and vertical flows of CO2-rich crude-oil mixtures, under key temperature/pressure conditions. Finally, comparisons were performed between the holdup and pressure-gradient results of those cases, obtained with different liquid/liquid- and gas/liquid-modeling approaches of a hydrodynamic point model of a commercial simulator.


Sign in / Sign up

Export Citation Format

Share Document